
 

 

 

DIVUS OPTIMA Scripting Module - Manual . 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

  Scripting Module Manual 

Version 2.0 

REV02-20160415 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 2 

 

GENERAL INFORMATION 

DIVUS GmbH 

Pillhof 51 

I-39057 Eppan (BZ) - Italy 

Operating instructions, manuals and software are protected by copyright. All rights are reserved. Copying, multi-

plication, translation and conversion, either partially or as a whole, is not permitted. You are allowed to make a 

single copy for backup purposes. 

We reserve the right to make changes to the manual without prior notification. 

We assume no responsibility for any errors or omissions that may appear in this document. 

We do not assume liability for the flawlessness and correctness of the programs and data contained on the de-

livered discs. 

You are always welcome to inform us of errors or make suggestions for improving the program. 

The present agreement also applies to special appendices to the manual. 

This manual can contain terms and descriptions, which improper use by third can harm the copyrights of the 

author.  

Please read the manual before beginning and keep the manual for later use.  

The manual has been conceived and written for users who are experienced in the use of PCs and automation 

technology. 

CONVENTIONS  

  

 

[KEYS] Keys that are to be pressed by the user are given in square brackets, e.g. [CTRL] or [DEL] 

COURIER On-screen messages are given in the Courier font, e.g. C:\> 

COURIER BOLD Keyboard input to be made by the user are given in Courier bold, e.g. C:\>DIR 

 
Names of buttons to be pressed, menus or other onscreen elements and product names are 

 

PICTOGRAMS In this manual the following symbols are used to indicate particular text blocks. 

 
Caution! 

A dangerous situation may arise that may cause damage to material. 

 
Hint 

Hints and additional notes 

 
New 

New features 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 3 

 

INDEX: 

1 INTRODUCTION ________________________________________________________________________________ 7 

1.1 WHAT IS KNXCONTROL ______________________________________________________________________ 7 

1.2 WHAT IS THIS MANUAL _____________________________________________________________________ 7 

1.3 REQUIREMENTS _____________________________________________________________________________ 7 

2 GENERAL OVERVIEW ___________________________________________________________________________ 8 

2.1 SCRIPTS ___________________________________________________________________________________ 8 

2.2 RUN - SCRIPTS _____________________________________________________________________________ 8 

2.3 LIBRARIES _________________________________________________________________________________ 10 

2.4 INPUTS AND OUTPUTS _____________________________________________________________________ 11 

2.5 DEBUG, INFO AND ERRORS _________________________________________________________________ 12 

2.6 INCLUSION OF SCRIPTS ____________________________________________________________________ 14 

3 SCRIPTS ______________________________________________________________________________________ 15 

3.1 INTRODUCTION ____________________________________________________________________________ 15 

3.2 OVERVIEW PAGE OF THE SCRIPTS ___________________________________________________________ 15 

3.3 SHOWING / EDITING SCRIPTS _______________________________________________________________ 17 

3.4 EXAMPLE _________________________________________________________________________________ 18 

4 RUN  SCRIPTS________________________________________________________________________________ 19 

4.1 INTRODUCTION ____________________________________________________________________________ 19 

4.2 CREATION OF A RUN-SCRIPT ________________________________________________________________ 19 

4.2.1 INCOMING CONNECTIONS ______________________________________________________________ 20 

4.2.2 OUTGOING CONNECTIONS _____________________________________________________________ 21 

4.3 DEBUG ____________________________________________________________________________________ 22 

4.4 BACKGROUND EXECUTION _________________________________________________________________ 23 

4.5 REPRESENTATION IN THE VISUALISATION ____________________________________________________ 23 

5  ____________________________________________________________________________ 25 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 4 

 

5.1 INTRODUCTION ____________________________________________________________________________ 25 

5.2 INCLUSION OF THE LIBRARY ________________________________________________________________ 25 

5.3 LOADING AN OBJECT ______________________________________________________________________ 25 

5.4 RELATIONS WITH OTHER OBJECTS __________________________________________________________ 28 

5.5 COMMANDING AN OBJECT _________________________________________________________________ 34 

5.6 REFRESHING OBJECTS WITHIN THE DATABASE _______________________________________________ 36 

6 - LIBRARY ____________________________________________________________________ 37 

6.1 INTRODUCTION ____________________________________________________________________________ 37 

6.2 INCLUSION OF THE LIBRARY ________________________________________________________________ 37 

6.3 ENVIRONMENT OF THE SCRIPT ______________________________________________________________ 37 

6.4 EXAMPLES ________________________________________________________________________________ 38 

7  _____________________________________________________________________________ 40 

7.1 INTRODUCTION ____________________________________________________________________________ 40 

7.2 INCLUSION OF THE LIBRARY ________________________________________________________________ 40 

7.3 INITIALIZING THE INTERFACE ________________________________________________________________ 40 

7.4 WRITING ON SERIAL ________________________________________________________________________ 41 

7.5 READING FROM SERIAL _____________________________________________________________________ 42 

7.6 DIRECT ACCESS TO THE INTERFACE _________________________________________________________ 42 

8  ___________________________________________________________________________ 44 

8.1 INTRODUCTION ____________________________________________________________________________ 44 

8.2 INCLUSION OF THE LIBRARY ________________________________________________________________ 44 

8.3  ___________________________________________________ 44 

8.4 READING REGISTERS _______________________________________________________________________ 45 

8.5 READING COILS ____________________________________________________________________________ 45 

8.6 WRITING REGISTERS _______________________________________________________________________ 46 

8.7 WRITING COILS ____________________________________________________________________________ 47 

8.8 READ AND WRITE REGISTERS _______________________________________________________________ 47 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 5 

 

8.9 VALUE CONVERSION _______________________________________________________________________ 48 

8.9.1 4 BYTE-VALUES _______________________________________________________________________ 48 

8.9.2 2 BYTE-VALUES _______________________________________________________________________ 49 

9  _____________________________________________________________________________ 51 

9.1 INTRODUCTION ____________________________________________________________________________ 51 

9.2 INCLUSION OF THE LIBRARY ________________________________________________________________ 51 

9.3  ___________________________________________________________ 51 

9.4  ________________________________________________________ 52 

9.5 VOLUME CONTROL ________________________________________________________________________ 53 

9.6 PLAYBACK MODE __________________________________________________________________________ 53 

9.7 MULTIMEDIA INFORMATION _________________________________________________________________ 54 

9.8 CONFIGURATION EXAMPLE _________________________________________________________________ 54 

9.8.1 CREATION OF THE COMPLEX OBJECT ___________________________________________________ 55 

9.8.2 CREATION AND CONNECTION OF THE RUN-SCRIPTS ______________________________________ 56 

10  ______________________________________________________________________________ 58 

10.1 INTRODUCTION __________________________________________________________________________ 58 

10.2 INCLUSION OF THE LIBRARY ______________________________________________________________ 58 

10.3  DEVICE __________________________________________________________ 58 

10.4 GENERAL COMMANDS OF  _____________________________________________ 59 

10.5  ________________________________________________________ 59 

10.6 EMULATION OF THE REMOTE CONTROL ___________________________________________________ 60 

10.7 PLAYBACK CONTROL ____________________________________________________________________ 61 

11  _________________________________________________________________________ 62 

11.1 INTRODUCTION __________________________________________________________________________ 62 

11.2 INCLUSION OF THE LIBRARY ______________________________________________________________ 62 

11.3 SENDING OUT ONSCREEN NOTIFICATIONS _________________________________________________ 63 

11.4 SENDING OUT MAIL NOTIFICATIONS _______________________________________________________ 63 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 6 

 

12 EXAMPLES ____________________________________________________________________________________ 65 

12.1 INTRODUCTION __________________________________________________________________________ 65 

12.2 LOGIC.AND _____________________________________________________________________________ 65 

12.3 LOGIC.OR _______________________________________________________________________________ 66 

12.4 SERIAL.WRITER_GENERIC_________________________________________________________________ 67 

12.5 DEMUX.STATUSBYTE ____________________________________________________________________ 68 

12.6 MATH.SUM _____________________________________________________________________________ 69 

12.7 MATH.PRODUCT _________________________________________________________________________ 70 

12.8 MODBUS.READCOILS ____________________________________________________________________ 71 

12.9 MODBUS.READREGISTERS ________________________________________________________________ 74 

12.10 MODBUS.WRITECOILS ___________________________________________________________________ 75 

12.11 SONOS.GENERIC_________________________________________________________________________ 76 

12.12 SONOS.SETVOLUME _____________________________________________________________________ 77 

12.13 SONOS.GETVOLUME _____________________________________________________________________ 77 

12.14 SONOS.PLAYPAUSE ______________________________________________________________________ 77 

12.15 SONOS.PREVNEXT _______________________________________________________________________ 78 

12.16 SONOS.SETPLAYMODE ___________________________________________________________________ 78 

12.17 SONOS.GETINFO _________________________________________________________________________ 78 

12.18 DUNE.ONOFF ____________________________________________________________________________ 79 

12.19 DUNE.PLAYPAUSE _______________________________________________________________________ 79 

12.20 DUNE.SETVOLUME ______________________________________________________________________ 80 

12.21 DUNE.IRCOMMAND ______________________________________________________________________ 80 

12.22 DEWPOINT ______________________________________________________________________________ 80 

13 APPENDIX ____________________________________________________________________________________ 81 

13.1 FUNCTION  OBJECT TYPES ______________________________________________________________ 81 

13.2 WEB  OBJECT TYPES____________________________________________________________________ 82 

13.3 NOTES __________________________________________________________________________________ 85 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 7 

 

1 Introduction 

1.1 WHAT IS KNXCONTROL 

KNXCONTROL is a product family for the supervision and visualisation of home & building automation systems, 

which have been realized on the basis of the worldwide KNX standard. The KNXCONTROL devices allow managing 

of all functions of the system through browser access from any PC / MAC / Touchpanel, tablet and smartphone 

of the last generation, within the same network or remotely via internet.  

Through the home page www.divus.eu all datasheets, brochures and technical manuals necessary for the 

configuration and usage of the KNXCONTROL products can be downloaded for free. 

The software to manage and visualize such a system is DIVUS OPTIMA. OPTIMA offers a complete set of basic 

functionalities which may be further expanded through a modular system. 

1.2 WHAT IS THIS MANUAL 

This manual explains the functionality of the scripting module of the KNXCONTROL devices, which can be used to 

extend their basic functionalities. The following list shows some application examples: 

 Interaction with the objects of the software (read values, evaluate actions, send commands) 

 Sending customized notifications 

 Interaction with the operating system 

 Sending / Receiving commands through LAN and serial interface 

The manual will guide you step by step through the creation of a customized script and its execution within the 

visualisation of the KNXCONTROL product. Furthermore you will find a detailed explanation of the different pre-

installed sample scripts, which will give you a good overview of the possibilities of the scripting module. 

1.3 REQUIREMENTS 

In order to be able to use the scripting functionalities of the KNXCONTROL devices in the best way, you should: 

 have a KNXCONTROL device 

 have good knowledge using OPTIMA 

 have good knowledge of ETS as well as of the KNX technology in general 

 have basic knowledge of the scripting language PHP 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 8 

 

2 General Overview 

2.1 SCRIPTS 

The SCRIPTS are program files containing PHP code, which are directly stored on the flash memory of the 

KNXCONTROL device and can be accessed through the configuration area (ADMINISTRATION) of OPTIMA. These 

files possess an own configuration window, which permits to create, edit, delete and also export the script files 

in order to use them on other devices, too. 

The script files are kept even after a reset of the database of the KNXCONTROL device. Since they are not part 

of the database-backup, if necessary, they have to be ported from one device to another manually. 

The scripts must be created according to the instructions and directives within this manual, by using the offered 

libraries. Each kind of PHP code not fulfilling the defined guidelines can compromise the correct functionality of 

the KNXCONTROL device. 

Your KNXCONTROL device contains already a few script examples, which give you an overview of the built-in 

functions and methods. The direct editing of those scripts is not allowed, but you can clone them and then work 

on the created copies. 

2.2 RUN - SCRIPTS 

After creating a new script (either by copying a sample script or by creating a new one) it must be connected to 

-  

 the run-script is  

 the value of an object, which has been defined as INPUT (Incoming connection) of the run-script, is 

changed. This behaviour is similar to all other objects inside OPTIMA. 

The SCRIPTS themselves cannot be executed directly; it will always be necessary to start them through a 

connected RUN-SCRIPT, which can be handled like any other object of the software: it has an own icon and a 

name, it can be assigned to rooms or function pages, it can be connected with outgoing and incoming 

connections (passive or active events), it can be connected to a scenario etc. 

The advantages of such a structure divided in SCRIPTS and RUN-SCRIPTS are: 

 the possibility to assign the SCRIPTS to more than one RUN-SCRIPT, in order to control/evaluate/ 

command different objects using the same functionality of the script. 

 the possibility to export the SCRIPTS independently from their usage in the current project, in order to 

use them also on other devices. 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 9 

 

The following scheme shall give you an idea about the information flow between RUN-SCRIPT and the connected 

objects / events as well as the data flow when commanding the RUN-SCRIPT: 

 

 

 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 10 

 

2.3 LIBRARIES 

Optima offers a set of programming libraries which provide different functions for the interaction with the 

connected objects. The libraries are not automatically accessible from the scripts, but must be included explicitly 

using the following command: 

include_library(<Name of the library>); 

 

Example: 

 

Since the inclusion of libraries costs both work and time during the execution of the script, it is recommended to 

include only the libraries that are really needed / used inside the script. It is also possible that libraries depend on 

other libraries; in this case the depending libraries must not be included separately, since the main library will 

include them automatically. 

The following table shows an overview of the available libraries as well as their dependencies. The single libraries 

will be explained in the further chapters of the manual: 

LIBRARY DESCRIPTION DEPENDENCY 

object 
Permits to interact with the different objects of the visualisation (read-

ing current values, changing properties, sending commands)  
db 

surrounding 
Permits to interact directly with the connected run-script and the pas-

sive / active events 

db 

object 

serial 
Permits to read / write strings through the RS232 interface of the KNX-

CONTROL device (or through compatible USB-RS232 converters) 
 

modbus 
Permits to manage one or more MODBUS SLAVE devices through TCP / 

UDP (reading and writing values) 
 

sonos 

Allows to control the basic functions of a Sonos device (multi-room ca-

pable speaker systems) connected to the same network as the KNX-

CONTROL device. 

 

dune Allows to control Dune-HD devices (multi-room speaker systems)  

messages 
Allows to access and manage notifications  both on-screen and via 

email 
 

include_library(“serial”); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 11 

 

2.4 INPUTS AND OUTPUTS 

If a RUN-SCRIPT is executed, it will always have an INPUT value: 

 If the RUN-SCRIPT is started manually through a page of the visualisation, the value depends on the 

user (e.g.: input of a value through a text field, pressing a button, etc. - depends on the graphical design 

assigned to the RUN-SCRIPT) 

 If the RUN-SCRIPT is executed through the status change of an object that has been defined as PARENT 

object (through a PASSIVE EVENT) of the RUN-SCRIPT, the used INPUT value depends on the 

configuration of the RUN-SCRIPT; the choice is between: 

o either the value of the PARENT object itself (that has triggered the execution) 

o or a constant value, which will be sent whenever the related PARENT object changes state 

In both cases, the INPUT value can be obtained inside the script by calling the following function: 

input(); 

 

Example: 

$val = input(); 

 

Depending on the PARENT object, which triggered the execution of the RUN-SCRIPT, the INPUT value can be 

numeric or a string; the PHP language does not make a big difference of it, since the variable, to which the INPUT 

value is assigned, will be adapted automatically. The author of the script has to check the type of the input value; 

for example, in order to check if the input value is a string, the following PHP function can be used: 

is_string(input()) 

 

To check if the value is an integer or a floating point number (float), the following PHP functions are recommended: 

is_int(input()) 

is_float(input()) 

 

And at last, to check if the value is a string with numeric characters, you can use: 

is_numeric(input()) 

 

Further details on the data types supported in PHP as well as the different control and conversion tools can be 

found in the following documentation on the web: 

http://www.php.net/manual/en/ref.var.php 

 

Once completed the script will return an OUTPUT value to the run-script as result which can for example be 

displayed within the visualisation or be used to execute other events. If inside the RUN-SCRIPT at least one 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 12 

 

OUTGOING CONNECTION has been defined, the result value will be passed to the CHILD objects through this 

event. 

In order to return a value at the end of the execution, the following function is used: 

output() 

 

Example: 

output(1); 

 

Hint: Calling the function output() will terminate the execution of the script; code in the script that is placed after 

this function will be ignored. 

 

If at the end of the script no value should be returned, it is enough to call the function without parameters: 

output(); 

 

In this case: 

 no values is passed to the RUN-SCRIPT  

 the OUTGOING CONNECTIONS are not executed 

 

Hint: The fact that when calling the function output() without parameters no OUTGOING CONNECTIONS are 

executed must not be seen as a restriction, but as a higher flexibility. In this way it is possible to handle the events 

already within the script and pass different values to the single events, which is not possible when using the 

returned OUTPUT value (same for all connections). Further details regarding this functionality can be found in the 

 

2.5 DEBUG, INFO AND ERRORS 

It is possible to insert different kinds of output messages into the script: DEBUG (to control the correct function 

of the script during its creation), INFO (to display information during the execution of the script) or ERROR (to 

notify when there are errors that prevent a correct termination of the script). 

In order to include such messages, the following commands can be used: 

debug() 

info() 

error() 

 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 13 

 

Example: 

debug(“This is a debug message”); 

info(“This is a info message”); 

error(“This is an error message”); 

 

The function error() provides also a second optional parameter for the so called RETURN code of the script. This 

code (not to be confused with the OUTPUT value of the script) is a numeric value, which informs the execution 

environment if the executed script has been terminated correctly. Normally this value will be 0 (zero), which 

corresponds to a correct execution without errors. If a script is interrupted by calling the function error(), this 

code can be used to provide information about the occurred error: 

error(“This is an error message”, 1); 

 

Your KNXCONTROL device uses return codes which can be used through static constants. The most important 

are: 

RETURN CODE NUMERIC VALUE DESCRIPTION 

_DPAD_RESULT_NOERROR 0 No error 

_DPAD_RESULT_DBERROR 1 Database error 

_DPAD_RESULT_SYSERROR 4 General system error 

_DPAD_RESULT_CONFIGER-

ROR 
5 

Configuration error 

_DPAD_RESULT_USERERROR 6 User error (e.g.: input of unsupported values) 

_DPAD_RESULT_IOERROR 7 
File system error (flash memory of the product, e.g. error when 

saving or accessing files) 

_DPAD_RESULT_TIMEOUT 12 Timeout error (script execution takes too long) 

 

The constants can be integrated in the error message as shown below: 

Error (“This is an error message”,_DPAD_RESULT_USERERROR); 

 

The messages can be very helpful when testing the script (see the chapter On runtime the messages 

are not shown at all; nevertheless they are stored in the internal log and can be viewed in a second moment. 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 14 

 

2.6 INCLUSION OF SCRIPTS 

It is also possible to include other scripts inside a customized script; this permits to use previously created scripts 

 

In order to include a script, please use the following command: 

include_script(<Script Name>); 

 

<Script Name> is a placeholder for the script to be included, e.g.: 

include_script(“MyScript”); 

 

It is also possible to pass an INPUT value to the included script, which will be used instead of the objects connected 

in the input list. To do so, just pass the value as second argument of the include function: 

include_script(“MyScript”,”New INPUT value”); 

 

This function also returns the OUTPUT value of the included script. This value can be stored inside a variable and 

then be used in the main script: 

$value = include_script(“MyScript”); 

 

As an  simply doubles the INPUT value and returns the result: 

$double = input() * 2; 

output($double); 

SCRIPT „Double“ 

 

realized as shown below: 

$double1 = include_script(“Double”);    //Doubles the INPUT value 

$double2 = include_script(“Double ”,2); //Doubles the value 2 (returns 4) 

$double3 = include_script(“Double ”,5); //Doubles the value 5 (returns 10) 

[...] 

 

Hint: The INPUT and OUTPUT values of a script that has been included via include_script() do NOT change the 

INPUT and OUTPUT values of the main script. 

In order to include a sample script instead of an own script, please use the following function (same as 

include_script()): 

include_sample(“SampleScript”); 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 15 

 

3 Scripts 

3.1 INTRODUCTION 

This chapter explains how to create, edit, delete and export customized scripts. 

3.2 OVERVIEW PAGE OF THE SCRIPTS 

In order to access the overview page of the scripts, please follow the steps below: 

 Log into the OPTIMA user interface with an administrator account 

 Open the ADMINISTRATION area 

    

 

A page similar to the following will be shown: 

 

The upper area of the page shows the sample scripts that are preinstalled on your KNXCONTROL device. Those 

your own scripts starting from the 

samples). 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 16 

 

The lower area instead shows the personally created scripts. In order to add a new script, just click on the NEW 

button at the bottom of the page. After inserting a name for the new script it will be created, which is also 

confirmed through an on screen message: 

 

 

If you want to create a new script starting from one of the script examples, just hit the corresponding 

COPY/CLONE icon (grey) next to the name of the sample script. Define also a name for the copied script.  

In order to delete a script, just click on the corresponding DELETE button (red). After confirmation of the action 

 

If you want to access the detail page of a script, please click on the corresponding EDIT button (green) next to 

the script  name. 

 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 17 

 

3.3 SHOWING / EDITING SCRIPTS 

If the EDIT button of a script has been pressed, the detail page of the script will be opened and the PHP code will 

hanged; when accessing a new/cloned script 

instead, the contents are editable. 

The following screenshot shows the detail page of a new script: 

 

 

As you may recognize, the TAGS for opening the script... 

 

 

?> 

 

integrated (outside of the editable area) and must not be included! The following chapters will give 

you all the information on how to create scripts using the available libraries. 

When finished with editing the code, the changes must be stored through the SAVE button. If you exit hitting 

directly the CLOSE button, or switch to another tab inside Optima, all unsaved changes will be lost! 

 

 

<?php 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 18 

 

3.4 EXAMPLE 

The following code will be used as code example in the further chapters of the manual (if not mentioned 

differently); it simply returns the received INPUT value after showing it within a debug message (the debug 

message will be visible only during debug, as also explained in the following chapters): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$value = input(); 

debug(“Obtained INPUT value: ” . $value); 

output($value); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 19 

 

4 Run  Scripts 

4.1 INTRODUCTION 

This chapter shows how to create and manage objects of type RUN-SCRIPT; these objects are used in order to 

execute the created scripts. In other words, the run-script, wrapped around a PHP script, makes the script an 

object inside Optima. Then this object can be configured, shown in a room, executed, etc. 

4.2 CREATION OF A RUN-SCRIPT 

In order to create a new RUN-SCRIPT, please follow the instructions below: 

 Log into the OPTIMA user interface with an administration account and open the ADMINISTRATION area  

 -  

 Press the ADD button in the bottom left toolbar 

 Access the configuration window of the RUN-SCRIPT through the EDIT function 

 

Besides the name of the new run-script, also the script that should be executed must be defined by selecting it 

from the drop-down menu. Furthermore the graphical design of the run-script can be selected, which defines the 

representation of the run-script within the pages of the visualisation and also defines the interaction possibilities 

given to the user. 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 20 

 

 

 

 

Furthermore, the following options can be defined for the run-script: 

EXECUTE AT STARTUP 
When enabling this checkbox, the run-script is executed immediately after the 

startup of the KNXCONTROL device  

EXECUTE IN A LOOP 

When enabling this checkbox, the run-script will be executed repeatedly inside a 

loop, until it is either stopped manually or through an event. Details about this 

 

LOOP TIME 
If the run-script is executed in a loop, please specify here the duration of the 

loop transition 

 

it is furthermore possible to start and stop a run-script manually, using the corresponding buttons within the detail 

page. 

The lower part of the detail page permits to manage the relations of the run-script with other objects, as well as 

the testing (DEBUG) of the script in real time. 

 

4.2.1 INCOMING CONNECTIONS 

The section Incoming Connections allows to define one or more objects that can trigger the execution of the run-

script when changing their state.  

Once an object has been dragged into this area, it must be defined which value should be passed to the script 

whenever the source object changes its state. Compared to other objects of the software, for which this value 

can be selected from a drop-down menu, the value in this case must be inserted manually, since only in this case 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 21 

 

the maximum flexibility can be granted in order to be able to create concatenations of different run-scripts. This 

field can contain the following values: 

$VAL The current value of the source object will be passed to the script as input value 

$NVAL The inverted value of the source object will be passed to the run-script as input 

value 

ANY NUMER / STRING The inserted, constant value will be passed to the run-script as input value, inde-

pendently from the object  value 

 

In any of these cases the INPUT value can be obtained inside of the script using the following command, as 

already mentioned in the last chapters: 

 

Hint: The value within this field is not the only possibility to access the values of connected objects from within 

see corresponding chapter of this manual) to access 

the state of every single object connected as input of the script. Therefore, the VALUE column is only important 

for the input value of the script which can be accessed through the command input(), as already seen. 

Each object can have a so called identifier assigned (consisting of a text string without spaces or special 

characters  column Functionality), which simplifies the usage of the object within a script with active 

SURROUNDING library. As described more in detail in the next chapter, the following command permits to call the 

input object within the script by using this identifier: 

 

The column variable shows the name of the variable, under which the INPUT object can be reached within the 

script. 

Hint: The column variable is not always refreshed automatically. U button if it should not show 

correct values. 

 

4.2.2 OUTGOING CONNECTIONS 

In the same way as the incoming connections, also the OUTGOING CONNECTIONS can be defined through the 

corresponding section. Objects inserted into this section can be commanded in dependency of the result of the 

executed run-script. For each object it is possible to define the action to be executed, as well as the value that 

VALUE OF THE RUN-SCRIPT at case, the 

OUTPUT value of the script will be passed to the object(s). The output is passed by the following command: 

 

Hint: As already mentioned, the execution of actions on the objects defined as outputs can be inhibited by not 

input() 

$me->getParentByIdentifier(“identifier”) 

output(…); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 22 

 

passing any argument to the function output(). In this case, the script itself must handle the execution of the 

desired actions, as described more in  

4.3 DEBUG 

Once the desired objects have been defined as inputs/outputs (i.e. incoming/outgoing connections) of the run-

script, the execution of the run-script can be tested thanks to the DEBUG function; this function executes the 

script (all actions within the script are executed at 100%), but ignores the execution of actions on the connected 

output objects (CHILD-objects), whose state will be shown within the column TEST, but actually NOT really set. 

In order to simulate status changes of objects in the Incoming connections section, you can simply change the 

value within the column TEST. The selected value will be automatically taken over from the field Input value and 

passed to the script as INPUT value. 

present in the script, they will be shown inside the DEBUG window. 

This window generally shows all message outputs of the script, including messages realized using other PHP 

functions like for example print(), echo(), print_r() etc.: 

 

The value returned by the output() function of the script will be shown in the field Output value; furthermore the 

column TEST of the objects in the output will be changed according to the configuration of the run-script. 

As alternative it is also possible to pass values to the script manually. In this case, just write the values into the 

INPUT VALUE field ENTER key or, even easier, just click on a 

free space outside of the input field). 

Hint: If the INPUT VALUE TEST column of the object connected as 

input or, vice-versa, the value in the TEST 

value shown in Output value, please check your script as well as your inputs in the VALUE column of the different 

objects. 

The simulation function not only is useful to debug the run-script and its various relations / connections, but also 

to debug the PHP code of the script file itself. For this purpose, the generous use of DEBUG messages can be 

really helpful and is recommended. 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 23 

 

4.4 BACKGROUND EXECUTION 

Run-scripts can also be executed in background, for example in order to repeat certain actions (e.g. periodically 

requesting a value), without depending on user interactions. 

The first of these options in the detail page of the run-script permits to enable the automatic start of the run-

script at completed startup of the software. If enabled, the script will be started whenever the KNXCONTROL 

device is started or restarted. 

 as it is either 

stopped manually or through an EVENT. If this option is combined with the first option, it is possible to realize a 

continuous execution of the script from the start of the visualisation, which runs completely hidden and requires 

no interaction from the user. 

If the loop execution is enabled, it is also necessary to define a loop timer, which determines the duration of each 

iteration of the loop. The scripting routine automatically calculates the execution time of the script and subtracts 

this value from the inserted loop time; in this way, each loop cycle will take exactly as long as the inserted time 

value (with a minimum tolerance). 

Hint: When enabling the loop execution of a script, the OUTPUT VALUE of the script (generated by the function 

output()) is automatically used as INPUT VALUE for the next iteration. In this way, the script can pass over the 

value  

4.5 REPRESENTATION IN THE VISUALISATION 

If a run-script is added to a page of the visualisation, its representation corresponds to the one shown in the 

screenshot(s): 

 

 

 

 

( Optima 1.3.x) 

 

 

 

(Optima 2.x  Expanded) 

(Optima 2.x  Compact) 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 24 

 

When clicking on the PLAY button, the run-script is executed and the shown symbol will change for the duration 

of the execution. If the run-script is executed in a loop, the object will remain in execution as long as the STOP 

button is pressed or the system interrupts the script execution. 

 

Hint: The interruption of a run-script that is executed in a loop will occur only after the execution of the script 

code, which means at the end of the current iteration. Therefore, it can happen that the run-script seems to 

remain in execution although the STOP button was pressed. This depends on the time the system needs to run 

through the code of the script. 

 

 

 

 

 

 

 

 

 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 25 

 

5  

5.1 INTRODUCTION 

KNXCONTROL device within 

a script, in form of variables. Those variables are at 100% PHP objects and therefore offer different attributes and 

methods, which can be used to interact with the rest of the software. For example, it is possible to read out the 

values of each object in the software in real time or to execute actions (like e.g. commanding KNX functions, 

executing scenarios, etc.). 

5.2 INCLUSION OF THE LIBRARY 

In order to include the library, use the following command at the start of the script: 

 

Starting from the next line, the following class can be used within the script: 

 

software and execute operations on  

 

colons and the name of the function to be called; these calls are different from normal object calls (whose names 

-  

5.3 LOADING AN OBJECT 

In order to load an object as a variable into a script, the following function can be used: 

 

XXX is the unique numeric ID that identifies the object within the software. The ID of an object can be found using 

the search function within the configuration area of the software, as shown in the following screenshot: 

include_library(“object”); 

objM 

objM::objGet(...); 

$variableName = objM::objGet(XXX); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 26 

 

 

 

 

The variable now contains a reference to the selected object and offers the following attributes within the script: 

ATTRIBUTE DESCRIPTION EXAMPLE/ACCESS 

id ID of the object $obj->id 

name Name of the object within the visualisation $obj->name 

state Current state of the object. 

NOTE: this attribute is only usable for scenario objects; in this 

case: 

Scenario stopped 

 

$obj->state 

value Current value of the object 

NOTE: this attribute can be used for all object types of the 

software that have a value, except scenarios (see attribute 

 

$obj->value 

enabled Informs whether the object is active or not. Possible values: 0 

, 1 

$obj->enabled 

msp Most important parameter of the object, depends on its type. 

Some examples: 

KNX objects: group address 

Logics: logical expression 

$obj->msp 

$scenarioMovie= objM::objGet(540); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 27 

 

Scenarios: number of iterations 

type Function object type of the object, is used by the 

communication service. Some examples: 

 

 

 

 

 

Run-  

 

NOTE: a complete list of the available types can be found in 

the appendix, chapter 12.1 

$obj->type 

phpclass Graphical web object type, is used by the web interface. Some 

examples: 

 

 

 

 

 

Run-  

 

found in the appendix, chapter 12.1 

$obj->phpclass 

values_type Data type or encoding. 

 

NOTE: depends on the object type 

$obj->values_type 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 28 

 

options Array with optional values. 

 

NOTE: depends on the object type 

$obj->options 

$obj->options[“...”] 

 

5.4 RELATIONS WITH OTHER OBJECTS 

In order to recognize relations 

following methods are available, which must be called directly on the variable with the object reference (and not 

 

 

Both functions return arrays with the corresponding values: 

 

Those arrays contain  for reach relation to other objects ( parent or child relations), 

which offers the following attributes: 

ATTRIBUTE DESCRIPTION EXAMPLE/ACCESS 

id ID of the relation within the database 

 

NOTE: this ID is the one of the relation itself and must not be con-

 

$relation->id 

parent 

child 

 

NOTE: these objects are complete PHP objects with the same attrib-

utes as described in chapter 5.3  

$relation->parent 

$relation->child 

condition In case of EVENT relations (ACTIVE or PASSIVE), this is the filter on 

the PARENT object that  if fulfilled  toggles the execution of the 

event. 

$relation->condition 

$object->loadParents(); 

$object->loadChilds(); 

$object->parentRelations[]; 

$object->childRelations[]; 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 29 

 

 

room) this field is not used and normally contains the expression 

-  

action In case of EVENT relations (ACTIVE or PASSIVE), this is the ACTION 

to be executed on the CHILD object. 

 

room) this field is not used and normally contains the expression 

-  

$relation->action 

value In case of EVENT relations (ACTIVE or PASSIVE), this is the VALUE to 

be passed to the CHILD object. 

 

room) this field is not used and normally contains the expression 

-  

$relation->value 

enabled Informs whether the object is active or not. Possible values: 0 , 1 $relation->enabled 

options List of optional settings of the relation; these settings, if present, are 

 

param1='value1'|param2='value2'|... 

also appear without apostrophe. 

$relation->options 

 

Hint: The attributes described here correspond to the values of the database table DPADD_OBJECT_RELATION, 

which is used from the software to handle relations between objects. 

 

Hint: The functions loadChilds() and loadParents() normally only load relations of the type EVENT, which are most 

commonly used within scripts. In order to load all kind of relations, please just pass the argument true to the 

function: 

$object->loadChilds(true); 

$object->loadParents(true); 

If only a certain type of relations should be returned, just past false as first argument and an array of the desired 

relation types as second argument: 

 

$object->  



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 30 

 

$object->  

Please note that 

attributes as the starting objects. For example, in order to access the value of the first CHILD object of the starting 

object, the following expression can be used: 

 

where: 

$object->childRelations[0]   First CHILD relation (Index 0) 

$object->childRelations[0]->child  Reference to the CHILD object of the relation 

$object->childRelations[0]->child->value Value of the CHILD object 

In order to understand how an object and its relations to PARENT and CHILD objects are structured, the following 

expression can be helpful (always assuming that $object is the starting object that should be analyzed): 

 

e output and make it 

readable) during the execution of the script (using a run-script, as explained it chapter 4.3) will use the DEBUG 

window in order to show the complete structure of the object given as argument. 

Here  

$firstChildValue = $object->childRelations[0]->child->value;  

echo “<pre>”; print_r($object); echo “</pre>”;  

obj Object 

( 

    [id] =>540 

    [name] =>Scenario Movie 

    [state] => 1 

    [value] => 

    [enabled] => 1 

    [options] => Array 

        ( 

        ) 

 

    [relations] => Array 

        ( 

        ) 

 

    [childRelations] => Array 

        ( 

            [0] => relation Object 

                ( 

                    [id] => 872 

                    [parent] =>obj Object 

 *RECURSION* 

                    [child] =>obj Object 

                        ( 

                            [id] => 487 

                            [name] =>Light – Living room 

                            [state] => -1 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 31 

 

                            [value] => 0 

                            [enabled] => 1 

                            [options] => Array 

                                ( 

                                    [category] =>lighting 

                                ) 

 

                            [relations] => Array 

                                ( 

                                ) 

 

                            [childRelations] => Array 

                                ( 

                                ) 

 

                            [childsLoaded] => 

                            [parentRelations] => Array 

                                ( 

                                ) 

 

                            [parentsLoaded] => 

                            [msp] => 0/0/4 

                        ) 

 

                    [condition] => NO-CONDITION 

                    [action] => NO-ACTION 

                    [value] => 0 

                    [enabled] => 1 

                    [options] => Array 

                        ( 

                        ) 

 

                ) 

 

            [1] => relation Object 

                ( 

                    [id] => 873 

                    [parent] =>obj Object 

 *RECURSION* 

                    [child] =>obj Object 

                        ( 

                            [id] => 491 

                            [name] =>Light - Kitchen 

                            [state] => -1 

                            [value] => 1 

                            [enabled] => 1 

                            [options] => Array 

                                ( 

                                    [category] => lighting 

                                ) 

 

                            [relations] => Array 

                                ( 

                                ) 

 

                            [childRelations] => Array 

                                ( 

                                ) 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 32 

 

 

                            [childsLoaded] => 

                            [parentRelations] => Array 

                                ( 

                                ) 

 

                            [parentsLoaded] => 

                            [msp] => 0/0/6 

                        ) 

 

                    [condition] => NO-CONDITION 

                    [action] => NO-ACTION 

                    [value] => 0 

                    [enabled] => 1 

                    [options] => Array 

                        ( 

                        ) 

 

                ) 

 

            [2] => relation Object 

                ( 

                    [id] => 875 

                    [parent] =>obj Object 

 *RECURSION* 

                    [child] =>obj Object 

                        ( 

                            [id] => 503 

                            [name] =>Light Dimmer 

                            [state] => -1 

                            [value] =>  75 

                            [enabled] => 1 

                            [options] => Array 

                                ( 

                                    [category] => lighting 

                                ) 

 

                            [relations] => Array 

                                ( 

                                ) 

 

                            [childRelations] => Array 

                                ( 

                                ) 

 

                            [childsLoaded] => 

                            [parentRelations] => Array 

                                ( 

                                ) 

 

                            [parentsLoaded] => 

                            [msp] => 0/0/15 

                        ) 

 

                    [condition] => NO-CONDITION 

                    [action] => NO-ACTION 

                    [value] => 0 

                    [enabled] => 1 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 33 

 

 

As you can see, the scenario contains 3 relations with CHILD objects (present in the Array childRelations, with 

index 0,1 and 2); each of these relations, beneath the different attributes also contains a reference to the CHILD 

object, which contains a set of attributes of its own. 

Please note that the relations also show the reference to the PARENT object; since in this case the PARENT object 

is the starting object, the reference is automatically renamed by the function print_r and displayed using the 

following expression: 

 

Hint: The command print_r, even if very useful during the creation and debugging of the script (in order to 

is 

completely useless (like every other message output function) and just slows down the execution of the script. 

Therefore it is recommended to disable every kind of message output function once the script is working correctly. 

It is furthermore possible to request an array of the objects by using the property of the relation to another object 

($object the downstanding example). To do so, use one of the following commands: 

 

where: 

 $fieldName Name of the property of the relation that should be used as filter 

 $fieldValue Value of the property 

 

If you want to get a reference to the relation itself (instead of the objects), you can use the following commands: 

 

The arguments that need to be passed are the same as above. 

                    [options] => Array 

                        ( 

                        ) 

 

                ) 

 

        ) 

 

 

    [childsLoaded] => 1 

[parentRelations] => Array 

        ( 

        ) 

 

    [parentsLoaded] => 1 

) 

*RECURSION* 

$object->getParentsByRelationField($fieldName,$fieldValue); 

$object->getChildsByRelationField($fieldName,$fieldValue); 

$object->getParentRelationsByField($fieldName,$fieldValue); 

$object->getChildRelationsByField($fieldName,$fieldValue); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 34 

 

Furthermore it is also possible to get a reference to the object (connected either in the Incoming connections or 

in the Outgoing connections) by using the manually assigned identifiers (check out chapter 4.2.1) and the 

following commands: 

5.5 COMMANDING AN OBJECT 

The object manager objM permits to send commands to any kind of object in the same way as is can be done 

through the visualisation pages of the OPTIMA interface or through logics, scenarios etc. 

The following function shows the general method for the execution of operations on objects: 

 

where 

 ID  ID of the object, on which the operation should take place 

 OPERATION Operation to be executed 

 VALUE  If supported, the value that is passed to the object 

 

 

 

0  

 

explained on the next page. 

The following table shows the operations (and the values, if supported) for the most important objects of the 

software: 

OBJECT OPERATION DESCRIPTION VALUE 

KNX object SETVALUE Sends a definable value to the KNX group 

address 

Depends on the KNX object 

Examples: 

$object->getParentByIdentifier($identifier); 

$object->getChildByIdentifier($identifier); 

objM::objPerformOperation(ID,OPERATION,VALUE); 

objM::objPerformOperation(123,”SETVALUE”,1); 

objM::objPerformOperation(540,”EXECUTE”); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 35 

 

 

 

 

GETVALUE Sends a request to get the current state No value 

Scenario EXECUTE Executes the scenario No value 

STOPEXECUTION Interrupts the scenario (if in execution) No value 

Logic EVALUATE Evaluates the logic and sets the outputs 

again 

No value 

Condition CALCULATE Evaluates the condition and sets the outputs 

again 

No value 

On-Screen 

Notification 

INSERT Puts the notification into the log table, in or-

der to show it inside the message central 

No value 

E-Mail  

notification 

SENDMAIL Sends out the mail notification No value 

Integrator INTEGRATE Calculates the value of the integrator again No value 

RESET Resets the integrator value to 0 No value 

Virtual object SETVALUE Sets the value of the virtual object Depends on the type of virtual object 

 

In order to simplify the work with the mostly used objects (KNX objects, scenarios and virtual objects), the following 

realized: this functions permit to be executed directly on the PHP variable that contains 

the object reference: 

 

If for example we want to start the sample scenario already seen before, the following function calls within the 

script can be used: 

$object->set(...);  //Sets the value passed as argument (SEVALUE operation) 

$object->run();     //Executes the scenario 

$object->stop();    // Interrupts the scenario 

$scenarioFilm = objM::objGet(540); 

$scenarioFilm->run(); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 36 

 

5.6 REFRESHING OBJECTS WITHIN THE DATABASE 

The following function permits to send out a SQL query, which can change attributes of the object directly within 

the database table: 

 

The available arguments are listed below: 

$OBJECTID ID of the object to be refreshed 

$FIELD Name of the database column that should be refreshed 

$VALUE New value to be written into the database 

 

 

 

The same function can also 

be called directly on an object. In this case, the correct syntax is: 

 

It is furthermore possible to read the attributes of an object from the database during the execution of the script 

and to force their refresh: 

 

Example: in order to refresh the value of the object, you can use the following command: 

 

Note: value here is the name of a database field, not a generic value, and tells Optima to load its content and 

refresh the text shown in the visualisation. So, if the content changed, the visualisation will reflect that change. 

objM::objUpdateToDb($objectId,$field,$value); 

objM::objUpdateToDb(XXX,”name”,”New Name”); 

$object->updateToDb($field, $value); 

$object->refreshFromDb($field); 

$object->refreshFromDb(“value”); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 37 

 

6 - Library 

6.1 INTRODUCTION 

-script 

and the objects defined as Incoming connections and Outgoing connections. 

This library depends directly on the previous

within this library therefore rely on the explanations in chapter 5, to which will be referred for some details. 

Hint ibrary must NOT be included separately, since 

it wil already be included automatically. 

6.2 INCLUSION OF THE LIBRARY 

In order to include the library, use the following command at the start of the script: 

6.3 ENVIRONMENT OF THE SCRIPT 

Starting from the next line, the following object can be used within the script: 

 

This object is structured in the same way as the objects described in chapter 5 and is a direct reference to the 

run-script that executes the script in question (and therefore allows a direct interaction). The object naturally 

permits to access the objects connected as Incoming connections Outgoing connections 

-script and gives them back as an array (please check out 

chapter 4.2). 

 

The inputs of the run-  

include_library(“surrounding”); 

$me 

$me->parentRelations[];   //INPUT relations 

$me->childRelations[];    //OUTPUT relations 

$in1;      //First input of the run-script 

$in2;      //Second input of the run-script 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 38 

 

 

In the same way also the OUTPUTS of the run-  

 

Hint: As already recommended in chapter 5.4, while debugging the script, the whole structure of the run-script 

can be displayed using the following expression:  

 

6.4 EXAMPLES 

If a script should be created that as OUTPUT VALUE shows the sum of the values of two input objects, it can be 

realized in the following way (assuming that the corresponding objects have been defined as Incoming 

connections of the run-script): 

 

If now also an object connected to the OUTPUT of the run-script should be set to the calculated value directly 

from within the script (instead of using the returned OUTPUT value and an Outgoing connection), the script may 

be changed in the following way: 

 

In the second case it is very important to call the function output() WITHOUT an argument, in order to prevent 

the run-script from executing the connected events (since the desired action was already done inside the script). 

Otherwise the output would be commanded twice: the first time directly from within the script and the second 

time through the execution of the event put into the Outgoing connections of the run-script. 

A script that calculates the sum of all the Incoming connections of the run-script might look like the following: 

 

… 

$out1;      //First output of the run-script 

$out2;      //Second output of the run-script 

… 

include_library("surrounding");        //Library inclusion 

$sum = $in1->value + $in2->value;      //Sum of the values of the first two inputs 

output($sum);                          //Returning the calculated value 

include_library("surrounding");       //Library inclusion 

$sum = $in1->value + $in2->value;     //Sum of the values of the first two inputs 

$out1->set($sum);                     //Setting the value of the first output 

output();                             //Script termination with no return 

include_library("surrounding");                   //Inclusion library 

$sum = 0;                                         //Init sum with value 0 

foreach($me->parentRelations as $parentRelation)   //Check of the input relations 

{ 

    $parent = $parentRelation->parent;            //Identification of the input 

    $sum = $sum + $parent->value;                 //Adding the value to the previous 

} 

output($sum);                                    //Returning the calculated value 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 39 

 

Hint: In the very same way the sample scripts AND and OR preinstalled in your KNXCONTROL device have been 

realized; further information on these scripts can be found in the chapter about the sample scripts. 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 40 

 

7  Library 

7.1 INTRODUCTION  

rmits to read and write data over the RS232 interface of your KNXCONTROL device or, in 

combination with a compatible USB-RS232 adapter, also over one of the available USB ports. 

7.2 INCLUSION OF THE LIBRARY 

In order to include the library, use the following command at the start of the script: 

 

 

 

 

 

Differently from the classes seen until now (which are called in a static way), the class $serialM must be handled 

-  

7.3 INITIALIZING THE INTERFACE  

The class serialM permits to configure the primary communication parameters of the serial interface; the following 

table shows the available attributes, the functions needed to access them, the default values and also possible 

alternative values: 

ATTRIBUTE FUNCTION CALL DEFAULT POSSIBLE VALUES 

COM port $serialM->deviceSet(...);  

NOTE: RS232 of KNXSERVER 

 

 

include_library(“serial”); 

$serialM 

include_library(“serial”); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 41 

 

 

Baud rate $serialM->confBaudRate(...); 19200 110, 150, 300, 600, 1200, 2400, 

4800, 9600, 19200, 38400, 57600, 

115200 

Parity $serialM->confParity(...);   

Data bits $serialM->confCharacterLength(...); 8 8, 7 

Stop bit $serialM->confStopBits(); 1 1, 1.5, 2 

Flow control $serialM->confFlowControl();   

 

If the default 

functions. Otherwise it is necessary to adjust the attributes before opening the serial interface for read/write 

operations: 

 

Examples: 

7.4 WRITING ON SERIAL 

In order to start a write operation, the interface must first be opened using the following command 

 

Afterwards,  

 

be sent over the serial interface. If necessary, you can 

also add a termination character at the end of the message:  

include_library(“serial”); 

$serialM->confBaudRate(9600); 

$serialM->confParity(“odd”); 

$serialM->confFlowControl(“rts/cts”); 

... 

$serialM->deviceOpen(); 

$serialM->sendMessage(...); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 42 

 

 

Examples: 

 

The function supports also a second argument, through which it is possible to add a time delay (in seconds), 

which has to pass before read actions can be done on the serial interface (details about reading data from serial 

can be found in the next chapter): 

 

At concluded write operation, the serial interface must be closed again using the command below: 

7.5 READING FROM SERIAL 

Also before starting read operations, the interface must be opened using the following command: 

 

Reading data from the serial port can be necessary after write operations with delay (e.g. when awaiting an 

answer), like already mentioned before. In order to get the data from the serial port, one of the following methods 

must be used: 

 

At concluded read operation, the serial interface must be closed again, as already seen before: 

7.6 DIRECT ACCESS TO THE INTERFACE 

can also be done using 

the following native PHP expressions: 

$serialM->sendMessage(“test”);            //Writing “test” with no termination 

$serialM->sendMessage(“test\n”);         //Writing “test” and “new line” 

$serialM->sendMessage(“test”.chr(13));  //Writing “test” and ENTER 

$serialM->sendMessage(“test\n”,2);     //Write, then wait 2 seconds 

$serialM->sendMessage(“test\n”,0.1);   //Write, then wait 100 milliseconds 

$serialM->deviceClose(); 

$serialM->deviceOpen(); 

$value = $serialM->readPort();     //Reads data from serial as long as available 

$value = $serialM->readPort(512);  //Reads a certain amount of bytes from the serial 

$serialM->deviceClose(); 

$fp = fopen('/dev/ttyS4','r+b');   //Opens the serial in write mode 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 43 

 

 

If these operations are executed after the initialization of the serial port (see chapter 7.3), also the native PHP 

commands will use the correct communication settings. 

 

 

 

 

 

 

$msg = “...”;                      //Initializes the message 

fwrite($fp,$msg . Chr(13));        //Writes out the message, followed by ENTER 

fclose($fp);                       //Closes the port again 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 44 

 

8  Library 

8.1 INTRODUCTION  

using either 

MODBUS TCP or UDP. 

8.2 INCLUSION OF THE LIBRARY 

In order to include the library, use the following command at the start of the script: 

 

Starting from the next line, the following class can be used within the script: 

 

software and  

 

colons and the name of the function to be called; these calls are different from normal object calls (whose names 

-  

8.3  

Before any read / write operations can take place, the class modbusM must be connected to the MODBUS SLAVE 

device used for the communication. This is done using the following command: 

 

where: 

$host IP address of the MODBUS device 

include_library(“modbus”); 

modbusM 

modbusM::bind(...); 

modbusM::bind($host, $protocol); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 45 

 

$protocol protocol to be  

As long as this function call is not repeated using different arguments, all operations will be sent to the specified   

MOD-BUS SLAVE device. 

8.4 READING REGISTERS 

In order to read one or more registers from a MODBUS SLAVE device, the following command must be used: 

 

where 

$unitID ID of the connected device. If not specified explicitly from the manufacturer,     use 0 (zero) 

$reference Register to be read. 

NOTE: the specified value needs to consider the device-internal offset, depending on the configura-

 

$quantity Quantity of registers to be read. Specify 1 if only one register per call should be read. 

 

The result will be returned by the function in form of a byte array (or, in other words, a string); further information 

regarding the conversion of the obtained data can be found in chapter 8.9 of this manual. 

8.5 READING COILS 

In order to read one or more coils (binary in-/outputs) from a MODBUS SLAVE device, the following command 

must be used: 

 

Where: 

$unitID ID of the connected device. If not specified explicitly from the manufacturer,     use 0 (zero) 

$reference Coil to be read. 

NOTE: the specified value needs to consider the device-internal offset, depending on the configura-

tion. 

$quantity Quantity of coils to be read. Specify 1 if only one coil per call should be read. 

$data = modbusM::readRegisters($unitID, $reference, $quantity); 

$data = modbusM::readCoils($unitID, $reference, $quantity); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 46 

 

 

The result will be returned by the function in form of an array with Boolean values (one value for each coil). 

8.6 WRITING REGISTERS  

In order to write one or more registers to a MODBUS SLAVE device, the following command must be used: 

 

where: 

$unitid ID of the connected device. If not specified explicitly from the manufacturer,     use 0 (zero) 

$reference Register to be written 

NOTE: the specified value needs to consider the device-internal offset, depending on the configura-

tion. 

$data Value array that should be passed to the registers (one value for each register to be written).The 

amount of values defines the amount of registers to be written. 

$datatypes Format array for each register to be written (fitting the elements in $data). Possible values: 

  

  

  

  

 

The function gives back a so called return code: it equals _SCRIPT_RESULT_NOERROR (0) at successful termination 

or an error code when the script was not finished correctly. Further information on the available return codes can 

be found in the chapter 2.5 of this manual. 

The following code shows an example of the presented function: 

 

 

 

 

 

$data = modbusM::writeRegisters($unitID, $reference, $data, $dataTypes); 

$data = array(10,-1000,2000,3.0); 

$dataTypes = array(“WORD”,”INT”,”DINT”,”REAL”); 

$result = modbusM::writeRegisters(0, 12288, $data, $dataTypes); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 47 

 

8.7 WRITING COILS 

In order to write one or more coils to a MODBUS SLAVE device, the following command must be used: 

 

 

where: 

$unitid ID of the connected device. If not specified explicitly from the manufacturer,     use 0 (zero) 

$reference Coil to be written 

NOTE: the specified value needs to consider the device-internal offset, depending on the configura-

tion. 

$data Array with Boolean values that should be passed to the coils. The amount of values defines the 

amount of coils to be written. 

 

The function gives back a so called return code: it equals _SCRIPT_RESULT_NOERROR (0) at successful termination 

or an error code when the script was not finished correctly. Further information on the available return codes can 

be found in the chapter 2.5 of this manual. 

The following code shows an example of the presented function: 

 

8.8 READ AND WRITE REGISTERS 

In order to write one or more registers to the MODBUS SLAVE device and contemporarily read out one or more 

registers (using the same connection), the following command can be used: 

 

where: 

 

$unitID ID of the connected device. If not specified explicitly from the manufacturer,     use 0 (zero) 

$referenceRead Register to be read 

$data = modbusM::writeCoils($unitID, $reference, $data); 

$data = array(TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, 

TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, 

              FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, 

              TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE); 

$result = modbusM::writeCoils(0, 12288, $data); 

$data = modbusM::readWriteRegisters($unitID, $referenceRead, $quantity, 

$referenceWrite, $data, $dataTypes); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 48 

 

$quantity Amount of registers to be read 

$reference-

Write 

Register to be written 

$data Value array that should be passed to the registers (one value for each register to be written).The 

amount of values defines the amount of registers to be written. 

$dataTypes Format array for each register to be written (fitting the elements in $data). Possible values: 

  

  

  

  

 

The function returns the read data in the same way as described also in chapter 8.4 of this manual; the 

arguments that are passed to the function are the same as described in chapter 8.4 and 8.6. 

8.9 VALUE CONVERSION 

The values that are returned by the read register functions can be converted into PHP format (for the further use 

within the script), naturally depending on the original data format (please refer to the documentation of the 

MODBUS device). The following chapters show some examples, where $data always refers to the received byte 

array (whose length depends on the quantity of read registers, as specified in the corresponding argument). 

 

8.9.1 4 BYTE-VALUES 

If the values in the registers of the device are present in 4 byte format (2 registers for each value), they can be 

 

 

Now on each value of the array one of the following conversion methods can be applied, depending on the original 

data format returned by the MODBUS device. See the examples below: 

 

 

 

 

 

$values = array_chunk($data, 4); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 49 

 

Conversion of the values from REAL to FLOAT: 

 

Conversion of the values from DINT to INTEGER: 

 

Conversion of the values from DWORD to INTEGER: 

 

8.9.2 2 BYTE-VALUES 

If the values in the registers of the device are present in 2 byte format (1 register for each value), they can be 

 

 

Now on each value of the array one of the following conversion methods can be applied, depending on the original 

data format returned by the MODBUS device. See the examples below: 

Conversion of the values from INT to INTEGER 

 

 

 

 

 

foreach($values as $bytes) 

{     

   $value = PhpType::bytes2float($bytes); 

[...] 

} 

foreach($values as $bytes) 

{ 

    $value = PhpType::bytes2signedInt($bytes); 

   [...] 

} 

foreach($values as $bytes) 

{ 

    $value = PhpType::bytes2unsignedInt($bytes); 

   [...] 

} 

$values = array_chunk($data, 2); 

foreach($values as $bytes) 

{     

   $value = PhpType::bytes2signedInt($bytes); 

[...] 

} 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 50 

 

Conversion of the values from WORD to INTEGER 

 

If no conversion, but a formatting of the complete registers as a string format is desired, the following expression 

can be used: 

 

 

 

 

 

 

 

 

 

 

 

 

foreach($values as $bytes) 

{ 

    $value = PhpType::bytes2unsignedInt($bytes); 

   [...] 

} 

PhpType::bytes2string($data); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 51 

 

9  Library 

9.1 INTRODUCTION 

information 

about the SONOS system can be found on www.sonos.com. 

9.2 INCLUSION OF THE LIBRARY 

In order to include the library, use the following command at the start of the script: 

 

Starting from the next line, the following class can be used within the script: 

 

software and execute operations on them. The class sonosM is used thro  

 

colons and the name of the function to be called; these calls are different from normal object calls (whose names 

-  

9.3  

Before any read / write operations can take place, the class sonosM must be connected to the SONOS device 

used for the communication. This is done using the following command: 

 

where: 

$host  IP address of the SONOS device 

include_library(“sonos”); 

sonosM 

sonosM::bind(...); 

sonosM::bind($host); 

http://www.sonos.com/


 

 

 

DIVUS OPTIMA Scripting Module - Manual . 52 

 

As long as this function call is not repeated using different arguments, all operations will be sent to the specified   

SONOS device. 

Hint: In order to find the IP address of a SONOS device, you have to install the control software of SONOS on your 

PC. By opening the information window of the software you will get a list of all configured SONOS devices, together 

with their IP address: 

 

 

 

 

 

 

 

 

 

9.4  

the following commands: 

 

Hint: The selection of the media contents that should be used for the playback (playlist / library) must be defined 

using the control software of SONOS. 

Within a running playlist you can use the following commands in order to switch between the tracks: 

 

Furthermore it is possible to forward to a certain playback time (in seconds) within the current track: 

 

 

sonosM::stop();          //Stops the playback of the media contents 

sonosM::play();          //Starts the playback of the media contents 

sonosM::pause();         //Pauses the playback of the media contents 

sonosM::next();               //Next track 

sonosM::previous();           //Previous track 

sonosM::setTrack($number);    //Jump to the track with number $number 

sonosM::setTime($time);   



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 53 

 

In order to jump back to the beginning of the track you can use: 

 

This command has the same effect as using sonosM::setTime(0);    . 

You can also check the current state of the SONOS device by using the following command: 

 

The return value of this function can be one of the following: 

 

 

 

9.5 VOLUME CONTROL 

The volume of a SONOS device can be  

 

volume of the device: 

 

Even in this case the return value will be an integer value between 0 and 100. 

The volume can also be set to 0 temporarily by using the MUTE command; naturally you can also check if the 

device cur-rently is in MUTE state: 

9.6 PLAYBACK MODE 

The following command permits to change the current playback mode: 

 

sonosM::rewind();   

$state = sonosM::getState();   

sonosM::setVolume($volume);   

$volume = sonosM::getVolume();   

sonosM::setMute();                  //Enables the MUTE function 

$mute = sonosM::getMute();        //Reads the current MUTE state from the device 

sonosM::setPlayMode($mode);        //Configure playback mode 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 54 

 

The argument $mode can be one of the following values: 

 

 

 

9.7 MULTIMEDIA INFORMATION 

It is possible to request information about the currently played media content at any time. In order to achieve this, 

the following command can be used: 

 

The return value is given in form of an array, which contains the following information: 

ARTIST Artist of the track 

TITLE Title of the track 

ALBUM Name of the album 

TRACK Track number 

POSITION Current playback time of the track (in seconds)  

DURATION Complete duration of the track (in seconds) 

 

In order to obtain a specific information from within the array, just use the following commands: 

9.8 CONFIGURATION EXAMPLE 

Your KNXCONTROL device, in combination with the SONOS library, offers a series of example scripts, which explain 

how the most important functions explained in the past chapters are used in the best way. 

Those sample scripts, explained more in detail in chapter 11, can be combined with Complex objects in order to 

create a special SONOS object for the VISUALISATION. The following pages will explain the required steps. 

 

$info = sonosM::getMediaInfo();        //Read media information of current track 

$info = sonosM::getMediaInfo();     //Gets the information array 

$title = $info[“title”];            //Assigns the title name to the variable $title  

$album = $info[“album”];            //Assigns the album name to the variable $album  

... 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 55 

 

9.8.1 CREATION OF THE COMPLEX OBJECT 

As first step you have to create a Complex object for every SONOS device that you want to control through the 

VISUALISATION. The template of the complex object must be set to MULTIROOM  ZONE; information about the 

handling and configuration of Complex objects can be found in the OPTIMA Administrator manual. 

After the creation of the Complex object, please repeatedly click on t OBJECTS 

CONTAINED IN THE COMPLEX OBJECT, in order to add Virtual Objects to the Complex object. The amount of 

Virtual objects depends on the amount of functionalities that you want to control. The Complex object offers the 

following functions (column FUNCTIONALITY): 

 Start / pause playback (PLAY / PAUSE) 

 Stop playback (STOP) 

 Previous / next track 

 Playback mode 

 Volume 

Hint: 

 generic complex object is 

described in the OPTIMA Administrator manual. 

After the creation of the single sub-objects you have to use the column Functionality in order to assign them a 

function within the complex object and the column Name in order to be able to identify the new object. 

Furthermore, through the column Label you can add an additional name which will be used as description of the 

function inside the complex object in the VISUALISATION. 

The following screenshot shows the detail page of the complex object with the newly created virtual objects: 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 56 

 

If the complex object is connected to a ROOM, it can be accessed through the VISUALISATION; the objects 

presents itself in a pop-up like the following: 

 

9.8.2 CREATION AND CONNECTION OF THE RUN-SCRIPTS 

After the creation of the complex object and integration into the VISUALISATION, from a graphical point of view, 

you have a complete object. Nevertheless, there is no real functionality connected to the different buttons yet. 

In order to connect the object to a SONOS device, for each function of the complex object a run-script must be 

created, which: 

 Must be connected to the script that executes the desired functionality 

 Must be connected to the Virtual object of the Complex object, that should be in control of the desired 

functionality. The Virtual object becomes an INPUT, through which the commands from within the 

VISUALISATION are passed to the script and are then redirected to the SONOS system. 

The script samples contained in your KNXCONTROL device already cover all the main functionalities needed to 

 

about the sample scripts can be found in chapter 11 of this manual. 

As an example for the connection of a Virtual object and a run-script, 

SONOS device. First of all we create a new run-script for which we want to use the sample script 

inside the script according to our 

. But, as already mentioned, this is possible only on your personal scripts. So, 

lookup the script named sonos.setvolume in the list of sample scripts under Advanced functions  Scripting  

Scripts and klick on the gray clone/copy button in that row. Once done, you will find the copy under your 

 inside the script itself  change the IP 

address and save the changes. 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 57 

 

Since the script neither needs to be executed after startup nor needs to be executed in a loop, the corresponding 

checkboxes can be ignored. 

 

As next step, we can find the Virtual object that previously has been created for the volume control within the 

Complex object (therefore it is important to give a unique NAME to the Virtual object) and we can connect it via 

drag&drop to the Incoming connections of the run-script.  

 

In this way, the value which is set by the user for the volume in the Complex object within the VISUALISATION, 

will be passed to the run-script as input value; the run-script will pass the value to the connected script, which 

will then execute the corresponding function (in this case setVolume()) in order to pass the value to the SONOS 

device. 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 58 

 

10  Library 

10.1 INTRODUCTION 

-HD devices (multiroom/multimedia) within a script. 

Further information about the DUNE system can be found on http://dune-hd.com/.  

10.2 INCLUSION OF THE LIBRARY 

In order to include the library, use the following command at the start of the script: 

 

Starting from the next line, the following class can be used within the script: 

 

 

 

The static calls start with the name of the clas

and the name of the function to be called; these calls are different from normal object calls whose names always 

- alls. 

10.3  DEVICE 

Before any read / write operations can take place, the class duneM must be connected to the DUNE-HD device 

used for the communication. This is done using the following command: 

 

Where: 

$host  IP ADDRESS OF THE DUNE DEVICE 

 

As long as this function call is not repeated using different arguments, all operations will be sent to the specified   

DUNE device. 

include_library(“dune”); 

duneM 

duneM::bind(...); 

duneM::bind($host); 

http://dune-hd.com/


 

 

 

DIVUS OPTIMA Scripting Module - Manual . 59 

 

10.4 GENERAL COMMANDS OF  

The communication with the DUNE device is done using network telegrams, which have to comply to the 

directives of the following protocol specification: 

http://dune-hd.com/support/ip_control/dune_ip_control_overview.txt  

The exact specification furthermore depends on the firmware version of the used DUNE device. 

 

 

Using the argument $cmdString the desired command can be passed to the DUNE device as described in the 

 

 

nction of the library must be used in the following way: 

 

If the execution of the command was successful, the function returns the value _SCRIPT_RESULT_NOERROR; if 

instead there has been an error, the return value is _SCRIPT_RESULT_USERERROR. 

The return value of the most recently executed command will be stored in the following global variable: 

 

This variable is an object which stores all the information received by the DUNE device in its attributes. The result 

the following input: 

10.5 CONTROL OF  

In order to simplify the handling of the scripts for the control of DUNE devices, the library offers a series of 

functions that already contain the most common multimedia controls. This makes the usage of the single scripts 

easier and helps you keeping an overview. 

For example, in order to play a certain multimedia content, depending on the type of content one of the following 

commands can be used: 

$result = duneM::call($cmdString); 

http://10.0.0.1/cgi-bin/do? 

cmd=start_file_playback&media_url=nfs://10.0.0.1:/VideoStorage:/SomeFolder/file.mkv 

duneM::call(“cmd=start_file_playback&media_url=nfs://10.0.0.1:/VideoStorage:/SomeF

older/file.mkv”); 

$_duneLastResponse 

$_duneLastResponse->command_status 

http://dune-hd.com/support/ip_control/dune_ip_control_overview.txt


 

 

 

DIVUS OPTIMA Scripting Module - Manual . 60 

 

 

The argument $url must contain the path to the multimedia source (CD, DVD, BLU-RAY) or the file / playlist that 

should be reproduced. The path must be specified in the format requested by the DUNE protocol. Some examples: 

 

pping 

the cur-rent playback) or the main screen of the device: 

 

For switching the device into standby, the following command can be used: 

10.6 EMULATION OF THE REMOTE CONTROL 

 

The library also offers the possibility to emulate the commands of the DUNE remote control. Therefore, the 

following command exists: 

 

The argument $code in this case must contain the IR code, which stands for the desired action; the IR codes are 

docu-mented on the following web page: 

http://dune-hd.com/support/rc 

 

 

In order to simplify the emulation of the remote control within a script, the library offers a second function, which 

instead of the IR codes accepts the description of the button of the remote control: 

 

 

duneM::playFile($url);           //Playback of a general movie file 

duneM::playDVD($url);            // Playback of a DVD or DVD image file 

duneM::playBluRay($url);         // Playback of a BluRay or BluRay image file 

duneM::playList($url,$track);    // Playback of a playlist, with optional parameter                                                                                  

for specifying the first track to be played 

duneM::playFile(“nfs://10.0.0.1:/VideoStorage:/SomeFolder/file.mkv”); 

duneM::playDVD(“smb://10.0.0.1/VideoStorage/SomeFolder/DVDFolder”); 

duneM::playDVD(“storage_name://MyHDD1/SomeFolder/dvd_image.iso”); 

duneM::playBluRay(“nfs://10.0.0.1:/VideoStorage:/SomeFolder/BlurayFolder”); 

duneM::playBluRay(“nfs://10.0.0.1:/VideoStorage:/SomeFolder/bluray_image.iso”); 

duneM::blackScreen(); 

duneM::mainScreen(); 

duneM::standby(); 

duneM::irCode($code); 

duneM::irCode(“F40BBF00”); 

duneM::irButton($button); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 61 

 

 

The following table shows an overview of the arguments supported by the second function. Please make sure to 

input the values correctly (e.g. capitalization). Furthermore be sure to input the arguments in quotation marks, 

since they have to be passed as STRINGS: 

EJECT MUTE MODE POWER A B C D 

1 2 3 4 5 6 7 8 

9 0 CLEAR SELECT V+ V- P+ P- 

SETUP UP DOWN LEFT RIGHT ENTER RETURN INFO 

PLAY PAUSE PREV NEXT STOP REW FWD REC 

 

Further information regarding the available buttons and supported functionalities can be found in the online 

documentation of DUNE. 

10.7 PLAYBACK CONTROL 

The volume of the DUNE device can be controlled using the following function: 

 

The argument $volume must be an integer value between 0 and 100; furthermore the device can be muted (value 

1) or unmuted (value 0) using the following command: 

 

Finally, you can also start and pause the playback of the current multimedia content by using the following two 

com-mands: 

 

 

duneM::irButton(“1”); 

duneM::setVolume($volume); 

duneM::setMute($mute); 

duneM::play(); 

duneM::pause(); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 62 

 

11  

11.1 INTRODUCTION 

having to create the normally needed objects within the VISUALISATION. 

11.2 INCLUSION OF THE LIBRARY 

In order to include the library, use the following command at the start of the script: 

 

Starting from the next line, the following class can be used within the script: 

 

 

 

As visible, the static calls start with the name 

colons and the name of the function to be called; these calls are different from normal object calls (whose names 

- function calls. 

 

 

 

 

 

 

include_library(“messages”); 

msgM 

msgM::sendVideoMsg(...); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 63 

 

11.3 SENDING OUT ONSCREEN NOTIFICATIONS 

In order to create and send out a new onscreen notification within a script, you can use the following command: 

 

Where: 

$msg  TEXT / CONTENTS OF THE NOTIFICATION 

$level  PRIORITY LEVEL; POSSIBLE VALUES: 

   0 Alarm (Standard) 

   1 Warning 

   2 Information 

 

Example: 

 

Naturally it is also possible to pass object values within the notification, for example the value of an object 

connected as INPUT of the run-script: 

 

If the notification was sent out with success, the function will throw out the return value 

_SCRIPT_RESULT_NOERROR; in case of errors the return value will contain the error description. 

11.4 SENDING OUT MAIL NOTIFICATIONS 

In very similar way also mail notifications can be sent out using the following command: 

 

where: 

$msg Text / contents of the mail 

$to Mail  

$subject Subject of the mail 

$cc Mail addresses in copy 

msgM::sendVideoMsg($msg,$level); 

msgM::sendVideoMsg(“Hello World!”,2); 

msgM::sendVideoMsg(“Input value” . input() . “ received!”,2); 

msgM::sendEMailMsg($msg,$to,$subject,$cc,$bcc); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 64 

 

$bcc Mail addresses in copy (hidden) 

 

Also this function, if the notification was sent out with success, will throw out the return value 

_SCRIPT_RESULT_NOERROR; in case of errors the return value will contain the error description. 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 65 

 

12 Examples 

12.1 INTRODUCTION 

This chapter presents and explains the single sample scripts preinstalled in your KNXCONTROL device. They can 

be used as starting point for the creation of customized scripts. 

12.2 LOGIC.AND 

This sample script executes a logical AND connection on all the objects connected to the INPUT of the run-script 

that integrates this sample script. Please find the PHP code below (some of the comments have been left out to 

make the code easier readable): 

 

This example is very similar to the one shown in chapter 6.4 of this manual: even here as first step a control of all 

PARENT relations (objects in the INPUT of the run-script) is done and the value of each of these objects is read; 

those values are then used in order to evaluate the AND connection sequentially (between the previous object 

and the next one). 

If the result gets FALSE once, the loop is interrupted, since a logical AND connection in this case can never 

become TRUE again. 

The calculated value is afterwards returned by calling the function output(). 

include_library("surrounding"); 

 

//Initializing logic result 

$result = true; 

 

//Scanning parent relations 

foreach($me->parentRelations as $parentRelation) 

{ 

    $parent = $parentRelation->parent; 

    $parent_value = $parent->value; 

 

    //Calculating new logic result by putting parent value in AND with previous 

result 

    $result = $result && (!empty($parent_value)); 

 

    //If result is no longer true, skipping: no need for further calculation, it 

won't never be true again! 

    if(!$result)  break; 

} 

 

//Sending result to output - In this way, runner will pass it to child (active event) 

output($result); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 66 

 

12.3 LOGIC.OR 

In the same way as the previous script, this sample script executes a logical OR connection on all the objects in 

the INPUT. The main differences to the previous script are shown in red: 

 

 

In this case, the loop is automatically interrupted as soon as the value of one of the objects in the input is different 

interrupted. 

 

 

 

 

 

 

 

 

 

 

 

include_library("surrounding"); 

 

//Initializing logic result 

$result = false; 

 

foreach($me->parentRelations as $parentRelation) 

{ 

    $parent = $parentRelation->parent; 

    $parent_value = $parent->value; 

 

    //Calculating new logic result by putting parent value in OR with previous result 

    $result = $result || (!empty($parent_value)); 

 

    //If result is true, skipping: no need for further calculation, it won't never 

be false again! 

    if($result)  break; 

} 

 

//Sending result to output - In this way, runner will pass it to child (active event) 

output($result); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 67 

 

12.4 SERIAL.WRITER_GENERIC 

This sample script shows how to write data on the serial interface; as message the INPUT value of the run-script 

is used. Also in this case some comments have been removed from the sample code in order to keep it readable: 

 

 

As you may notice, above the command to open the serial port, all commands to change the communication 

parameters of the interface are present in the script. So if you need to change those parameters, you can just 

uncomment the des

7.3. 

The value that is sent to the interface is the INPUT value (called through the function input()) of the run-script, 

followed by the characters to jump to a new line (can be adapted for your own needs). 

At termination of the write operation the interface is closed and the script will return the sent value by passing it 

to the function output(); in this way the run-script  in case it should also be present in a page of the visualisation 

 can also show the sent value. This step is optional and has nothing to do with the write operation itself; therefore 

you are free to modify or remove the argument of this command. 

 

 

 

include_library("serial"); 

 

//Uncomment following lines if you need to change default serial settings 

//$serialM->deviceSet("/dev/ttyS4");    //ATTENTION: change it at your own risk! 

This is default RS232 port of KNXSERVER 

//$serialM->confBaudRate(19200); //Change baudrate - Allowed values: 

110,150,300,600,1200,2400,4800,9600,19200,38400,57600,115200 

//$serialM->confParity("none");    //Change parity - Allowed values: 

"none","odd","even" 

//$serialM->confCharacterLength(8);//Change character length 

//$serialM->confStopBits(1);       //Change stop bits 

//$serialM->confFlowControl("none");//Change flow control - Allowed values: 

"none","rts/cts","xon/xoff" 

 

//Opening serial port 

$serialM->deviceOpen();                      

 

//Initializing message as input value 

$msg = input(); 

 

//Sending message to serial port, by adding a trailing return at the end (new line) 

$serialM->sendMessage($msg . "\n");    

 

//Closing serial port 

$serialM->deviceClose(); 

 

//Sending input value to output - In this way, value is passed to any eventual 

runner's child and set as its value 

output(input()); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 68 

 

12.5 DEMUX.STATUSBYTE 

This sample script executes -script. It is necessary that 

the INPUT value is a 1 byte value (numeric value between 0 and 255). This value is split up by the script into 8 

values of 1 bit, which consequently are available in the binary format. 

Hint: 

KNX devices in order to send their current state to the bus (therefore the name of this sample script). The script 

 this value and permits to assign the single bit values to 8 objects connected to the output of the run-

script, allowing them to show the state of the main object. 

This script requires that the connected run-script has connected 8 objects in its OUTPUT section. To each of 

they appear within the outputs section of the run-script. 

 

 

 

The obtained numeric value is firstly converted to binary code 

automatically, in order to get a fixed length of 8 bit). As next step, the objects connected as outputs of the run-

script (from 1 to 8) are assigned to a variable using a loop: 

 

Then the script checks if the output is really existing; if no object can be detected (e.g. because not connected 

in the run-script), the loop is interrupted: 

include_library("surrounding"); 

 

//Converting input value to binary 

$statusByte = str_pad(decbin(input()),8,'0',STR_PAD_LEFT); 

 

//Scanning childs up to 8th, setting corresponding demuxed value 

for($i=0;$i<8;$i++) 

{ 

  //Initializing output name into a temporary variable 

  $outName = "out" . ($i+1); 

   

  //If variable is not set, exiting loop - It means we don't have enough children 

associated to the run-script 

  if(!isSet($$outName)) break; 

   

  //Setting value to child 

  $$outName->set($statusByte[$i] ? 1 : 0); 

} 

 

//Returning an empty string - In such a way, environment won't call children again 

(since we already did it!) 

output(); 

$statusByte = str_pad(decbin(input()),8,'0',STR_PAD_LEFT); 

$outName = "out" . ($i+1); 

if(!isSet($$outName)) break; 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 69 

 

 

ed, which passes the calculated bit value 

(either 0 or 1) to the output: 

 

Hint:  

$$outName 

  

$out1, $out2 etc... 

object in the output of the run-script (check out chapter 6.3 for the explanation of $out). 

At the end the script is terminated using the following function: 

 

This means that no value is returned by the script and therefore prevents that the objects in the output of the 

run-script, which have already been commanded directly from within the script, are executed again. 

12.6 MATH.SUM 

This sample script calculates the SUM of the values of all objects connected in the input of the run-script. Find 

below the sample code (the comments have been left out to make the code easier readable): 

 

Also this example is very similar to the one shown in chapter 6.4 of this manual: as first step a control of all 

PARENT relations is done and the value of each of these objects is read; those values are then used in order to 

calculate the sum sequentially.  

The calculated value is afterwards returned by calling the function output(). 

Note: The following version of the script is based on the same concept, but filters out some hidden objects which 

were introduced in newer versions of Optima and could cause the above script to fail. The added lines are bold. 

$$outName->set($statusByte[$i] ? 1 : 0); 

output(); 

include_library("surrounding"); 

 

$sum = 0; 

 

foreach($me->parentRelations as $parentRelation) 

{ 

    $parent = $parentRelation->parent; 

    $parent_value = $parent->value; 

 

    $sum = $sum + floatval($parent_value); 

} 

 

output($sum); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 70 

 

 

12.7 MATH.PRODUCT 

This sample script calculates the PRODUCT of the values of all objects connected in the input of the run-script. 

Find below the sample code (the comments have been left out to make the code easier readable): 

 

the result must be initialized with value 1 instead of 0. 

Also in this case the calculated value is returned by calling the function output(). 

See 12.6 (2nd script) for a similar script which filters out some hidden object types  the same procedure might 

be necessary here. 

include_library("surrounding"); 

 

$sum = 0; 

 

foreach($me->parentRelations as $parentRelation) 

{ 

    $parent = $parentRelation->parent; 

    $parent_value = $parent->value; 

    $parent_type = $parent->type; 

 

    if ((!empty($parent_value))&&($parent_type!="LOGIC"&&$parent_type!="GROUP")) { 

        $sum = $sum + floatval($parent_value); 

    } 

} 

 

output($sum); 

include_library("surrounding"); 

 

$product = 1; 

 

foreach($me->parentRelations as $parentRelation) 

{ 

    $parent = $parentRelation->parent; 

    $parent_value = $parent->value; 

 

    $product = $product * floatval($parent_value); 

} 

 

output($product); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 71 

 

12.8 MODBUS.READCOILS 

This sample script reads a series of coils (binary in/outputs) from a MODBUS SLAVE device and can consequently 

command an object connected as OUTPUT of the run-script: 

 

 

 

As you can easily notice, the first part of the script is used to initialize the parameters necessary for the 

communication with the MODBUS SLAVE device: 

 

 

Besides IP address and protocol it is also important to specify the MODBUS address of the first coil to be read. 

Please refer to the documentation of your MODBUS device in order to find out the correct value (please keep in 

mind that the command to read out the val  

The script has been designed to be launched from a run-script with the same amount of objects connected to its 

output as the amount of coils that should be read from the MODBUS SLAVE device: 

include_library("surrounding"); 

 

$host = "192.168.0.71";   //Change this according with MODBUS SLAVE IP address 

$protocol = "TCP";         //Same as above 

$start = 0;                 //First coil to read 

 

$number = count($me->childRelations); 

if($number>0) 

{ 

 include_library("modbus"); 

  

 modbusM::bind($host,$protocol); 

  

 $values = modbusM::readCoils(0, $start, $number); 

  

 for($i=0;$i<count($values);$i++) 

 { 

  $value = !empty($values[$i]) ? 1 : 0; 

  debug("Coil " . ($start + $i) . " has value $value",true); 

   

  $childName = "out" . ($i+1); 

  if(is_object($$childName)) 

  { 

   if($$childName->value == $value) continue; 

    

   $$childName->set($value); 

   debug("Object " . $$childName->name . " set to $value",true); 

  } 

 } 

} 

 

output(); 

$host = "192.168.0.71";   //Change this according with MODBUS SLAVE IP address 

$protocol = "TCP";         //Same as above 

$start = 0;                 //First coil to read 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 72 

 

 

 

 

 

 

 

 

 

 

 

 

After the start, the script checks the amount of objects present in the output of the run-  

 

 been 

included) the same amount of coils from the MODBUS SLAVE device: 

 

Now the array with the results (that contains the same amount of elements as the amount of objects in the 

output) is passed through a 

a variable... 

 

... just like the corresponding output is written to a variable: 

 

As already explained in chapter 9.5 the following expression is used to access the output directly: 

 

 

After a short check if the output is really existing... 

same state as the value received from the 

MODBUS device ($value), since in this case no action would be necessary: 

$number = count($me->childRelations); 

$values = modbusM::readCoils(0, $start, $number); 

$value = !empty($values[$i]) ? 1 : 0; 

$childName = "out" . ($i+1); 

$$childName 

if(is_object($$childName)) 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 73 

 

 

If those values are different, the value read from the MODBUS device is set to the output object: 

 

At conclusion, the script is terminated without passing an OUTPUT value: 

 

Also here this last step is very important, since otherwise the output objects would be controlled again and the 

previously set values would be overwritten. 

Typically a run-script connected to such kind of scripts will be started immediately after the start of the software 

and should be running continuously in background: 

The loop time defines the duration between one and the next execution of the script, in this case the frequency, 

e 

KNXCONTROL device. 

Hint: When using too small values for the loop time (< one second), you risk to overload your KNXCONTROL de-

vice, above all when many coils must be read (the same goes for similar scripts which read out the registers of 

MODBUS devices). 

if($$childName->value == $value) continue; 

$$childName->set($value); 

output(); 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 74 

 

12.9 MODBUS.READREGISTERS 

This sample script is based on the same concept as the previous one, but instead of reading out coils it reads 

registers from the MODBUS SLAVE device. For an easier reading, the main differences to the previous script are 

highlighted in red: 

 

For this script it is also necessary to specify in which format (2 or 4 byte) the data should be read from the 

MODBUS  device and sequentially be passed to the output objects: 

 

With this information, the resulting data array can be split up... 

 

ed as outputs of the run-script. Depending 

on the data format received from the MODBUS device it could be possible that a corresponding conversion of the 

data is made, like for example: 

 

Further information regarding the various conversion methods can be found in the chapter 8.9 of this manual. 

include_library("surrounding"); 

$host = "192.168.0.71";  //Change this according with MODBUS SLAVE IP address 

$protocol = "TCP";        //Same as above 

$start = 0;                //First register to read 

$dataLength = 2;          //Bytes for each data - Typically 2 or 4 bytes 

 

$number = count($me->childRelations); 

if($number>0) 

{ 

 include_library("modbus"); 

  

 modbusM::bind($host,$protocol); 

  

 $data = modbusM::readRegisters(0, $start, $number); 

  

 $values = array_chunk($data, $dataLength); 

 for($i=0;$i<count($values);$i++) 

 { 

  $value = PhpType::bytes2signedInt($values[$i]); 

  debug("Register " . ($start + $i) . " has value $value",true); 

   

  $childName = "out" . ($i+1); 

  if(is_object($$childName)) 

  { 

   $$childName->set($value); 

   debug("Object " . $$childName->name . " set to $value",true); 

  } 

 } 

} 

output(); 

$dataLength = 2;          //Bytes for each data - Typically 2 or 4 bytes 

$values = array_chunk($data, $dataLength); 

$value = PhpType::bytes2signedInt($values[$i]); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 75 

 

Hint

sending out the value received via MODBUS. In any case it is recommended to insert this control  just like in the 

script reading out the coils  since in this way it can be prevented that values are continuously written to the bus, 

even if not necessary (most important when the script is executed in a loop). 

Also for this sample script it makes sense to be executed at startup of the software and to run continuously in 

background (in a loop). 

12.10 MODBUS.WRITECOILS 

This sample script writes a series of coils to a MODBUS SLAVE device, depending on status changes of the objects 

connected as inputs of the run-script: 

 

As already seen in the last chapters, the first part of the script is used to configure the communication parameters 

of the MODBUS SLAVE device: 

 

This script also requires the number of the first coil to be written ($start). The amount of coils to be written is 

determined through the amount of objects connected as input of the run-script: 

include_library("surrounding"); 

 

$host = "192.168.0.71";   //Change this according with MODBUS SLAVE IP address 

$protocol = "TCP";         //Same as above 

$start = 0;                 //First coil to write 

 

$number = count($me->parentRelations); 

if($number>0) 

{ 

 include_library("modbus"); 

  

 modbusM::bind($host,$protocol); 

  

 $values = array(); 

  

 foreach($me->parentRelations as $parentRelation) 

 { 

  $parent = $parentRelation->parent; 

  $value = $parent->value; 

  

  $values[] = (!empty($value) ? TRUE : FALSE); 

 } 

  

 $result = modbusM::writeCoils(0, $start, $values); 

 debug("Written coils to modbus slave: " . implode(",",$values)); 

} 

 

output(); 

$host = "192.168.0.71";   //Change this according with MODBUS SLAVE IP address 

$protocol = "TCP";        //Same as above 

$start = 0;               //First coil to write 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 76 

 

 

After the inclusion 

 

 

 

 

after the write operation. 

12.11 SONOS.GENERIC 

The following script shows a short demo application for the control of a SONOS device: 

 

After connecting to a SONOS device with IP address 192.168.0.150, the script sends different commands to the 

device, each separated by 5 seconds of break. 

$number = count($me->parentRelations); 

foreach($me->parentRelations as $parentRelation) 

 { 

  $parent = $parentRelation->parent; 

  $value = $parent->value; 

  

  $values[] = (!empty($value) ? TRUE : FALSE); 

 } 

$result = modbusM::writeCoils(0, $start, $values); 

include_library("sonos"); 

 

sonosM::bind("192.168.0.150"); 

 

sonosM::play(); 

debug("Now SONOS is playing...",true); 

 

sleep(5); 

 

sonosM::setVolume(50); 

debug("Now SONOS volume is 50%...",true); 

 

sleep(5); 

 

sonosM::next(); 

debug("Skipped to next SONOS track...",true); 

 

sleep(5); 

 

sonosM::pause(); 

debug("Now SONOS is in pause...",true); 

 

output(); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 77 

 

12.12 SONOS.SETVOLUME 

This script sets the volume of a SONOS device depending on the received input value (normally the value of an 

object connected as INPUT of the run-script that is executing the current script): 

 

Hint  for KNX objects as also with the volume function 

-  

12.13 SONOS.GETVOLUME 

This script gets the current volume value from the SONOS device and returns it as output value (and therefore 

normally passes it to an object connected as OUTPUT of the run-script that is executing the current script): 

12.14 SONOS.PLAYPAUSE 

This script starts the multimedia playback (PLAY) of the SONOS device or pauses the playback (PAUSE), depending 

on the value received as input (1 or 0): 

 

Hint: This script is compatible also and with the play/pause 

function of the Complex object MULTIROOM - ZONE. 

include_library("sonos"); 

sonosM::bind("192.168.0.150"); 

$volume = input(); 

sonosM::setVolume($volume); 

output(); 

include_library("sonos"); 

sonosM::bind("192.168.0.150"); 

$volume = sonosM::getVolume(); 

output($volume); 

include_library("sonos"); 

sonosM::bind("192.168.0.150"); 

$cmd = input(); 

if(intval($cmd)==1) 

 sonosM::play(); 

else 

 sonosM::pause(); 

  

output(); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 78 

 

12.15 SONOS.PREVNEXT 

This script jumps to the next or previous track of the playlist of the SONOS device, depending on the value received 

as input (1 or 0): 

 

Hint: as well as with the previ-

ous/next track function of the Complex object MULTIROOM - ZONE. 

12.16 SONOS.SETPLAYMODE 

This script changes the playback mode of a SONOS device, depending on the received input value: 

 

Hint: as well as also with the 

playback mode function of the Complex object MULTIROOM  ZONE. 

12.17 SONOS.GETINFO 

This script requests information about the currently played track from the SONOS device and can pass this 

information to objects connected as Outgoing connections of the run-script (the order of how the values are 

passed from within the script also determines the order in which the corresponding objects have to be connected 

in the output section of the run-script): 

include_library("sonos"); 

sonosM::bind("192.168.0.150"); 

$cmd = input(); 

if(intval($cmd)==1) 

 sonosM::next(); 

else 

 sonosM::previous(); 

output(); 

include_library("sonos"); 

sonosM::bind("192.168.0.150"); 

$mode = input(); 

sonosM::setPlayMode($mode); 

output(); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 79 

 

 

12.18 DUNE.ONOFF 

This script turns a DUNE device either off or on, depending on the value received as input (0 or 1): 

12.19 DUNE.PLAYPAUSE 

This script turns the multimedia playback of a DUNE device on (PLAY) or pauses it (PAUSE), depending on the 

value received as input (0 or 1): 

 

Hint: 

-  

include_library("surrounding"); 

include_library("sonos"); 

sonosM::bind("192.168.0.150"); 

$info = sonosM::getMediaInfo(); 

   

if(isSet($out1) && ($out1->value != $info["artist"]))   $out1->set($info["artist"]); 

if(isSet($out2) && ($out2->value != $info["title"]))    $out2->set($info["title"]); 

if(isSet($out3) && ($out3->value != $info["album"]))    $out3->set($info["album"]); 

if(isSet($out4) && ($out4->value != $info["Track"]))    $out4->set($info["Track"]); 

if(isSet($out5) && ($out5->value != $info["position"])) $out5->set($info["position"]); 

if(isSet($out6) && ($out6->value != $info["duration"])) $out6->set($info["duration"]); 

 

output(); 

include_library("dune"); 

duneM::bind("192.168.0.150"); 

$cmd = input(); 

if(intval($cmd)==1) 

 duneM::mainScreen(); 

else 

 duneM::standby(); 

  

output(); 

include_library("dune"); 

duneM::bind("192.168.0.150"); 

$cmd = input(); 

 

if(intval($cmd)==1) 

 duneM::play(); 

else 

 duneM::pause(); 

  

output(); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 80 

 

12.20 DUNE.SETVOLUME  

This script sets the volume of a DUNE device depending on the received input value: 

 

Hint

of the complex -  

12.21 DUNE.IRCOMMAND 

This script emulates the pressure of a button on the remote control of the DUNE system, depending on the 

received input value: 

12.22 DEWPOINT 

This script calculates the dew point depending on a TEMPERATURE and a relative HUMIDITY value, which need to 

be connected as INPUT objects of the run-script. In the example below we assume that the temperature has been 

added as first input and the humidity as second input value: 

 

Hint: The calculation is done based on the approximate formula explained on the following page: 

http://en.wikipedia.org/wiki/Dew_point 

include_library("dune"); 

duneM::bind("192.168.0.150"); 

 

$volume = input(); 

duneM::setVolume($volume); 

  

output(); 

include_library("dune"); 

duneM::bind("192.168.0.150"); 

 

$button = input(); 

duneM::irButton($button); 

  

output(); 

include_library("surrounding"); 

 

$T = floatval($in1->value); 

$H = floatval($in2->value); 

 

$D = round(pow(($H/100),(1/8)) * (112 + (0.9 * $T)) + (0.1 * $T) - 112,1); 

output($D); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 81 

 

13 Appendix 

13.1 FUNCTION  OBJECT TYPES 

The table on the following page shows a list of all the function types of the objects present in the OPTIMA inteface. 

Those are used by the communication service in order to execute all kind of actions on the low level part of the 

 

Beneath a description, the table contains also all executable actions for each object type; these can be called 

using the following command: 

 

Details regarding the correct usage of this function can be found within chapter 5.5. of this manual. 

 DESCRIPTION ACTIONS 

VIRTUALOBJECT Virtual object  

SCENARIO Scenario  

 

LOGIC Logic  

CONDITION Condition  

CLIENTBROWSER Client  

 

NOTIFY_VIDEO Onscreen notification on 

NOTIFY_EMAIL Mail notification  

INTEGRATOR Integrator  

 

EIBOBJECT KNX object address of the KNX object 

objM::objPerformOperation(ID,OPERATION,VALUE); 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 82 

 

KNX object 

CSCMD Run-script  

 

USER User 

is currently online 

online 

USERGROUP User group  

USERPERMISSION Permission  

CONTAINER Complex object  

CAMERA IP camera  

PBXELEMENT VoIP participant 

External unit 

Call group 

 Calls the corresponding VoIP object 

13.2 WEB  OBJECT TYPES 

The following table shows a list of all the web types of the objects present in the OPTIMA interface. Those object 

types are used by the web interface for the graphical representation of the previously explained function types 

 

For each web type  if present  

also possible that more than one PHPCLASS is connected to the sa

the corresponding PHPCLASS has no connection to the communication service of the software and is therefore 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 83 

 

) DESCRIPTION  

dpadObject General object*  

dpadGroup Room (or folder/ container / groups)   

dpadUrl Link  

dpadSysCmd System command* SYSCMD 

dpadSysCmdWait Wait command of a scenario SYSCMD 

dpadUser User USER 

dpadUserGroup User group USERGROUP 

dpadUserPermission Permission of a user group USERPERMISSION 

dpadTriggerObject Trigger for database changes* TRIGGEROBJECT 

dpadContainer Complex object CONTAINER 

dpadVirtualObject Virtual object VIRTUALOBJECT 

dpadScenario Scenario SCENARIO 

dpadPbxExtension VoIP participant PBXELEMENT 

dpadPbxTrunk Phone line 

dpadPbxQueue Call group 

dpadPbxDoorOpener External unit 

dpadLogic Logic LOGIC 

dpadCondition Condition CONDITION 

dpadClientBrowser Client CLIENTBROWSER 

dpadNotifyVideo Onscreen notification NOTIFY_VIDEO 

dpadNotifyEmail Mail notification NOTIFY_EMAIL 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 84 

 

dpadIntegrator Integrator INTEGRATOR 

dpadEibObject KNX object EIBOBJECT 

dpadCamera IP camera CAMERA 

dpadScriptRunner Run-script CSCMD 

dpadLoadControl Load control CSCMD 

 

  



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 85 

 

13.3 NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

DIVUS OPTIMA Scripting Module - Manual . 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	General INformation
	conventions
	InDEX:
	1 Introduction
	1.1 what is knxcontrol
	1.2 What is this manual
	1.3 requirements

	2 General Overview
	2.1 Scripts
	2.2 RUN - scripts
	2.3 libraries
	2.4 inputs And outputs
	2.5 Debug, info and errors
	2.6 inclusion of scripts

	3 Scripts
	3.1 introduction
	3.2 overview page of the scripts
	3.3 showing / editing scripts
	3.4 example

	4 Run – Scripts
	4.1 introduction
	4.2 creation of a run-script
	4.2.1 INCOMING CONNECTIONS
	4.2.2 Outgoing connections

	4.3 Debug
	4.4 background execution
	4.5 Representation in the visualisation

	5 „Object“ Library
	5.1 introduction
	5.2 inclusion of the library
	5.3 loading an object
	5.4 relations with other objects
	5.5 commanding an object
	5.6 refreshing objects within the database

	6 „Surrounding“ - Library
	6.1 introduction
	6.2 inclusion of the library
	6.3 ENVIRONMENT OF THE script
	6.4 examples

	7 „Serial“ Library
	7.1 introduction
	7.2 inclusion of the library
	7.3 initializing the interface
	7.4 writing on serial
	7.5 reading from serial
	7.6 direct access to the interface

	8 „Modbus“ Library
	8.1 introduction
	8.2 inclusion of the library
	8.3 assigning the „modbus Slave“ device
	8.4 reading registers
	8.5 reading coils
	8.6 writing registers
	8.7 writing coils
	8.8 read and write registers
	8.9 value conversion
	8.9.1 4 BYTE-VALUES
	8.9.2 2 BYTE-VALUES


	9 „Sonos“ Library
	9.1 introduction
	9.2 inclusion of the library
	9.3 assigning the „sonos“ Device
	9.4 controlling the „sonos“ Device
	9.5 volume control
	9.6 playback mode
	9.7 Multimedia information
	9.8 configuration example
	9.8.1 CREATION OF THE COMPLEX OBJECT
	9.8.2 CREATION AND CONNECTION OF THE RUN-SCRIPTS


	10 „Dune“ Library
	10.1 introduction
	10.2 inclusion of the library
	10.3 assigning the „dune“ Device
	10.4 general commands of the „dune“ device
	10.5 control of the „dune“ Device
	10.6 Emulation of the remote control
	10.7 playback control

	11 „Messages“ Library
	11.1 introduction
	11.2 inclusion of the library
	11.3 sending out onscreen notifications
	11.4 sending out mail notifications

	12 Examples
	12.1 introduction
	12.2 Logic.And
	12.3 Logic.Or
	12.4 Serial.Writer_Generic
	12.5 Demux.STATUSBYTE
	12.6 Math.Sum
	12.7 Math.Product
	12.8 Modbus.Readcoils
	12.9 Modbus.Readregisters
	12.10 Modbus.Writecoils
	12.11 Sonos.Generic
	12.12 Sonos.Setvolume
	12.13 Sonos.Getvolume
	12.14 Sonos.PlayPAuse
	12.15 Sonos.Prevnext
	12.16 Sonos.Setplaymode
	12.17 Sonos.Getinfo
	12.18 Dune.Onoff
	12.19 Dune.Playpause
	12.20 Dune.Setvolume
	12.21 Dune.Ircommand
	12.22 Dewpoint

	13 Appendix
	13.1 Function – Object Types
	13.2 WEB – OBJECT TYPES
	13.3 NOTES


