

DIVUS OPTIMA Scripting Module - Manual . 1

 Scripting Module Manual

Version 2.0

REV02-20160415

DIVUS OPTIMA Scripting Module - Manual . 2

GENERAL INFORMATION

DIVUS GmbH

Pillhof 51

I-39057 Eppan (BZ) - Italy

Operating instructions, manuals and software are protected by copyright. All rights are reserved. Copying, multi-

plication, translation and conversion, either partially or as a whole, is not permitted. You are allowed to make a

single copy for backup purposes.

We reserve the right to make cha nges to the manual without prior notification.

We assume no responsibility for any errors or omissions that may appear in this document.

We do not assume liability for the flawlessness and correctness of the programs and data contained on the de-

livered discs.

You are always welcome to inform us of errors or make suggestions for improving the program.

The present agreement also applies to special appendices to the manual.

This manual can contain terms and descriptions, which improper use by third can harm the copyrights of the

author.

Please read the manual before beginning and keep the manual for later use.

The manual has been conceived and written for users who are experienced in the use of PCs and automation

technology.

CONVENTIONS

[KEYS] Keys that are to be pressed by the user are given in square brackets, e.g. [CTRL] or [DEL]

COURIER On-screen messages are given in the Courier font, e.g. C: \ >

COURIER BOLD Keyboard input to be made by the user are given in Courier bold, e.g. C: \ >DIR

Names of buttons to be pressed, menus or other onscreen elements and product names are

PICTOGRAMS In this manual the following symbols are used to indicate particular text bloc ks.

Caution!

A dangerous situation may arise that may cause damage to material.

Hint

Hints and additional notes

New

New features

DIVUS OPTIMA Scripting Module - Manual . 3

INDEX:

1 INTRODUCTION __ 7

1.1 WHAT IS KNXCONTROL __ 7

1.2 WHAT IS THIS MANUAL ___ 7

1.3 REQUIREMENTS ___ 7

2 GENERAL OVERVIEW ___ 8

2.1 SCRIPTS ___ 8

2.2 RUN - SCRIPTS ___ 8

2.3 LIBRARIES ___ 10

2.4 INPUTS AND OUTPUTS ___ 11

2.5 DEBUG, INFO AND ERRORS ___ 12

2.6 INCLUSION OF SCRIPTS __ 14

3 SCRIPTS __ 15

3.1 INTRODUCTION __ 15

3.2 OVERVIEW PAGE OF THE SCRIPTS ___ 15

3.3 SHOWING / EDITING SCRIPTS ___ 17

3.4 EXAMPLE ___ 18

4 RUN SCRIPTS__ 19

4.1 INTRODUCTION __ 19

4.2 CREATION OF A RUN-SCRIPT __ 19

4.2.1 INCOMING CONNECTIONS __ 20

4.2.2 OUTGOING CONNECTIONS ___ 21

4.3 DEBUG __ 22

4.4 BACKGROUND EXECUTION ___ 23

4.5 REPRESENTATION IN THE VISUALISATION __ 23

5 __ 25

DIVUS OPTIMA Scripting Module - Manual . 4

5.1 INTRODUCTION __ 25

5.2 INCLUSION OF THE LIBRARY __ 25

5.3 LOADING AN OBJECT __ 25

5.4 RELATIONS WITH OTHER OBJECTS __ 28

5.5 COMMANDING AN OBJECT ___ 34

5.6 REFRESHING OBJECTS WITHIN THE DATABASE ___ 36

6 - LIBRARY __ 37

6.1 INTRODUCTION __ 37

6.2 INCLUSION OF THE LIBRARY __ 37

6.3 ENVIRONMENT OF THE SCRIPT __ 37

6.4 EXAMPLES __ 38

7 ___ 40

7.1 INTRODUCTION __ 40

7.2 INCLUSION OF THE LIBRARY __ 40

7.3 INITIALIZING THE INTERFACE __ 40

7.4 WRITING ON SERIAL __ 41

7.5 READING FROM SERIAL ___ 42

7.6 DIRECT ACCESS TO THE INTERFACE ___ 42

8 ___ 44

8.1 INTRODUCTION __ 44

8.2 INCLUSION OF THE LIBRARY __ 44

8.3 ___ 44

8.4 READING REGISTERS ___ 45

8.5 READING COILS __ 45

8.6 WRITING REGISTERS ___ 46

8.7 WRITING COILS __ 47

8.8 READ AND WRITE REGISTERS ___ 47

DIVUS OPTIMA Scripting Module - Manual . 5

8.9 VALUE CONVERSION ___ 48

8.9.1 4 BYTE-VALUES ___ 48

8.9.2 2 BYTE-VALUES ___ 49

9 ___ 51

9.1 INTRODUCTION __ 51

9.2 INCLUSION OF THE LIBRARY __ 51

9.3 ___ 51

9.4 __ 52

9.5 VOLUME CONTROL __ 53

9.6 PLAYBACK MODE __ 53

9.7 MULTIMEDIA INFORMATION ___ 54

9.8 CONFIGURATION EXAMPLE ___ 54

9.8.1 CREATION OF THE COMPLEX OBJECT ___ 55

9.8.2 CREATION AND CONNECTION OF THE RUN-SCRIPTS ______________________________________ 56

10 __ 58

10.1 INTRODUCTION __ 58

10.2 INCLUSION OF THE LIBRARY __ 58

10.3 DEVICE __ 58

10.4 GENERAL COMMANDS OF ___ 59

10.5 __ 59

10.6 EMULATION OF THE REMOTE CONTROL ___ 60

10.7 PLAYBACK CONTROL __ 61

11 ___ 62

11.1 INTRODUCTION __ 62

11.2 INCLUSION OF THE LIBRARY __ 62

11.3 SENDING OUT ONSCREEN NOTIFICATIONS ___ 63

11.4 SENDING OUT MAIL NOTIFICATIONS ___ 63

DIVUS OPTIMA Scripting Module - Manual . 6

12 EXAMPLES __ 65

12.1 INTRODUCTION __ 65

12.2 LOGIC.AND ___ 65

12.3 LOGIC.OR ___ 66

12.4 SERIAL.WRITER_GENERIC___ 67

12.5 DEMUX.STATUSBYTE __ 68

12.6 MATH.SUM ___ 69

12.7 MATH.PRODUCT ___ 70

12.8 MODBUS.READCOILS __ 71

12.9 MODBUS.READREGISTERS __ 74

12.10 MODBUS.WRITECOILS ___ 75

12.11 SONOS.GENERIC___ 76

12.12 SONOS.SETVOLUME ___ 77

12.13 SONOS.GETVOLUME ___ 77

12.14 SONOS.PLAYPAUSE __ 77

12.15 SONOS.PREVNEXT ___ 78

12.16 SONOS.SETPLAYMODE ___ 78

12.17 SONOS.GETINFO ___ 78

12.18 DUNE.ONOFF __ 79

12.19 DUNE.PLAYPAUSE ___ 79

12.20 DUNE.SETVOLUME __ 80

12.21 DUNE.IRCOMMAND __ 80

12.22 DEWPOINT __ 80

13 APPENDIX __ 81

13.1 FUNCTION OBJECT TYPES __ 81

13.2 WEB OBJECT TYPES__ 82

13.3 NOTES __ 85

DIVUS OPTIMA Scripting Module - Manual . 7

1 Introduction

1.1 WHAT IS KNXCONTROL

KNXCONTROL is a product family for the supervision and visualisation of home & building automation systems,

which have been realized on the basis of the worldwide KNX standard. The KNXCONTROL devices allow managing

of all functions of the system through browser access from any PC / MAC / Touchpanel, tablet and smartphone

of the last generation, within the same network or remote ly via internet.

Through the home page www.divus.eu all datasheets, brochures and technical manuals necessary for the

configuration and usage of the KNXCONTROL products can be downloaded for free.

The software to manage and visualize such a system is DIVUS OPTIMA. OPTIMA offers a complete set of basic

functionalities which may be further expanded through a modular system.

1.2 WHAT IS THIS MANUAL

This manual explains the functionality of the scripting module of the KNXCONTROL devices, which can be used to

extend their basic functionalities. The following list shows some application examples:

¶ Interaction with the objects of the software (read values, evaluate actions, send commands)

¶ Sending customized notifications

¶ Interaction with the operating system

¶ Sending / Receiving commands through LAN and serial interface

The manual will guide you step by step through the creation of a customized script and its execution within the

visualisation of the KNXCONTROL product. Furthermore you will find a detailed explanation of the different pre -

installed sample scripts, which will give you a good overview of the possibilities of the scripting module.

1.3 REQUIREMENTS

In order to be able to use the scripting functionalities of the KNXCONTROL devices in the best way, you sh ould:

¶ have a KNXCONTROL device

¶ have good knowledge using OPTIMA

¶ have good knowledge of ETS as well as of the KNX technology in general

¶ have basic knowledge of the scripting language PHP

DIVUS OPTIMA Scripting Module - Manual . 8

2 General Overview

2.1 SCRIPTS

The SCRIPTS are program files containing PHP code, which are directly stored on the flash memory of the

KNXCONTROL device and can be accessed through the configuration area (ADMINISTRATION) of OPTIMA. These

files possess an own configuration window, which permits to create, edit, delete and also exp ort the script files

in order to use them on other devices, too.

The script files are kept even after a reset of the database of the KNXCONTROL device. Since they are not part

of the database -backup, if necessary, they have to be ported from one device to another manually.

The scripts must be created according to the instructions and directives within this manual, by using the offered

libraries. Each kind of PHP code not fulfilling the defined guidelines can compromise the correct functionality of

the KNXCONTROL device.

Your KNXCONTROL device contains already a few script examples, which give you an overview of the built-in

functions and methods. The direct editing of those scripts is not allowed, but you can clone them and then work

on the created cop ies.

2.2 RUN - SCRIPTS

After creating a new script (either by copying a sample script or by creating a new one) it must be connected to

-

¶ the run -script is

¶ the value of an object , which has been defined as INPUT (Incoming connection) of the run -script, is

changed. This behaviour is similar to all other objects inside OPTIMA.

The SCRIPTS themselves cannot be executed directly; it will always be necessary to start them through a

connected RUN-SCRIPT, which can be handled like any other object of the software: it has an own icon and a

name, it can be assigned to rooms or function pages, it ca n be connected with outgoing and incoming

connections (passive or active events), it can be connected to a scenario etc.

The advantages of such a structure divided in SCRIPTS and RUN-SCRIPTS are:

¶ the possibility to assign the SCRIPTS to more than one RUN-SCRIPT, in order to control/evaluate/

command different objects using the same functionality of the script.

¶ the possibility to export the SCRIPTS independently from their usage in the current project, in order to

use them also on other devices.

DIVUS OPTIMA Scripting Module - Manual . 9

The following scheme shall give you an idea about the information flow between RUN -SCRIPT and the connected

objects / events as well as the data flow when commanding the RUN -SCRIPT:

DIVUS OPTIMA Scripting Module - Manual . 10

2.3 LIBRARIES

Optima offers a set of programming libraries which provide different functions for the interaction with the

connected objects. The libraries are not automatically accessible from the scripts, but must be included explicitly

using the following command:

include_library(<Name of the library>);

Example:

Since the inclusion of libraries costs both work and time during the execution of the script, it is recommended to

include only the libraries that are really needed / used inside the script. It is also possible that libraries depend on

other libraries; in this case the depending libraries must not be included separately, since the main library will

include them automatically.

The following table shows an overview of the available libraries as well as their dependencie s. The single libraries

will be explained in the further chapters of the manual:

LIBRARY DESCRIPTION DEPENDENCY

object
Permits to interact with the different objects of the visualisation (read-

ing current values, changing properties, sending commands)
db

surrounding
Permits to interact directly with the connected run -script and the pas-

sive / active events

db

object

serial
Permits to read / write strings through the RS232 interface of the KNX-

CONTROL device (or through compatible USB-RS232 converters)

modbus
Permits to manage one or more MODBUS SLAVE devices through TCP /

UDP (reading and writing values)

sonos

Allows to control the basic functions of a Sonos device (multi -room ca-

pable speaker systems) connected to the same network as the KNX-

CONTROL device.

dune Allows to control Dune -HD devices (multi -room speaker systems)

messages
Allows to access and manage notifications both on -screen and via

email

include_library(ñserialò);

DIVUS OPTIMA Scripting Module - Manual . 11

2.4 INPUTS AND OUTPUTS

If a RUN-SCRIPT is executed, it will always have an INPUT value:

¶ If the RUN-SCRIPT is started manually through a page of the visualisation, the value depends on the

user (e.g.: input of a value through a text field, pressing a button, etc. - depends on the graphical design

assigned to the RUN-SCRIPT)

¶ If the RUN-SCRIPT is executed through the status change of an object that has been defined as PARENT

object (through a PASSIVE EVENT) of the RUN-SCRIPT, the used INPUT value depends on the

configuration of the RUN -SCRIPT; the choice is between:

o either the value of the PARENT object itself (that has triggered the execution)

o or a constant value, which will be sent whenever the related PARENT object changes state

In both cases, the INPUT value can be obtained inside the script by calling the following function:

input() ;

Example:

$val = input() ;

Depending on the PARENT object, which triggered the execution of the RUN -SCRIPT, the INPUT value can be

numeric or a string; the PHP language does not make a big difference of it, since the variable, to which the INPUT

value is assigned, will be adapted automatically. The author of the script has to check the type of the input value;

for example, in order to check if the input value is a string, the following PHP function can be used:

is_string (input())

To check if the value is an integer or a floating point number (float), the following PHP function s are recommended:

is_int (input())

is_float (input())

And at last, to check if the value is a string with numeric characters, you can use:

is_numeric (input())

Further details on the data types supported in PHP as well as the different control and conversion tools can be

found in the following documentation on the web:

http://www.php.net/manual/en/ref.var.php

Once completed the script will return an OUTPUT value to the run -script as result which can for ex ample be

displayed within the visualisation or be used to execute other events. If inside the RUN-SCRIPT at least one

DIVUS OPTIMA Scripting Module - Manual . 12

OUTGOING CONNECTION has been defined, the result value will be passed to th e CHILD objects through this

event.

In order to return a value at the end of the execution, the following function is used:

output()

Example:

output(1);

Hint: Calling the function output() will terminate the execution of the script; code in the script that is placed after

this function will be ignored.

If at the end of the script no value should be returned, it is enough to call the function without parameters:

output() ;

In this case:

¶ no values is passed to the RUN-SCRIPT

¶ the OUTGOING CONNECTIONS are not executed

Hint: The fact that when calling the function output() without parameters no OUTGOING CONNECTIONS are

executed must not be seen as a restriction, but as a higher flexibility. In this way it is possible to handle the events

already within the script and pass different values to the single events, which is not possible when using the

returned OUTPUT value (same for all connections). Further details regarding this functionality can be found in the

2.5 DEBUG, INFO AND ERRORS

It is possible to insert different kind s of output messages into the script: DEBUG (to control the correct function

of the script during its creation), INFO (to display information during the execution of the script) or ERROR (to

notify when there are errors that prevent a correct termination of the script).

In order to include such mes sages, the following commands can be used:

debug()

info()

error()

DIVUS OPTIMA Scripting Module - Manual . 13

Example:

debug(ñThis is a debug messageò);

info(ñThis is a info messageò);

error(ñThis is an error messageò);

The function error() provides also a second optional parameter for the so called RETURN code of the script. This

code (not to be confused with the OUTPUT value of the script) is a numeric value, which informs the execution

environment if the executed script has been terminated correctly. Normally this value will be 0 (ze ro), which

corresponds to a correct execution witho ut errors. If a script is inter rupted by calling the function error(), this

code can be used to provide information about the occurred error:

error(ñThis is an error messageò, 1);

Your KNXCONTROL device uses return codes which can b e used through static constants. The most important

are:

RETURN CODE NUMERIC VALUE DESCRIPTION

_DPAD_RESULT_NOERROR 0 No error

_DPAD_RESULT_DBERROR 1 Database error

_DPAD_RESULT_SYSERROR 4 General system error

_DPAD_RESULT_CONFIGER-

ROR
5

Configuration error

_DPAD_RESULT_USERERROR 6 User error (e.g.: input of unsupported values)

_DPAD_RESULT_IOERROR 7
File system error (flash memory of the product, e.g. error when

saving or accessing files)

_DPAD_RESULT_TIMEOUT 12 Timeout error (script execution takes too long)

The constants can be integrated in the error message as shown below:

Error (ñThis is an error messageò,_DPAD_RESULT_USERERROR);

The messages can be very helpful when testing the script (see the chapter On runtime the messages

are not shown at all; nevertheless they are stored in the internal log and can be viewed in a second moment.

DIVUS OPTIMA Scripting Module - Manual . 14

2.6 INCLUSION OF SCRIPTS

It is also possible to include other scripts inside a customized script; this permit s to use previously created scripts

In order to include a script, please use the following command:

include_script(<S cript Name>);

<Script Name> is a placeholder for the script to be included, e.g.:

include_script(ñMyScriptò);

It is also possible to pass an INPUT value to the included script, which will be used instead of the objects connected

in the input list. To do so, just pass the value as second argument of the include function:

include_script(ñMyScript ò,òNew INPUT valueò);

This function also returns the OUTPUT value of the included script. This value can be stored inside a variable and

then be used in the main script:

$value = include_script(ñMyScriptò);

As an simply doubles the INPUT value and returns the result:

$double = input() * 2;

output($double);

SCRIPT ĂDoubleñ

realized as shown below:

$double1 = include_script(ñDoubleò); //Doubles the INPUT value

$double2 = include_script(ñDouble ò,2); //Doubles the value 2 (returns 4)

$double3 = include_script(ñDouble ò,5); //Doubles the value 5 (returns 10)

[...]

Hint : The INPUT and OUTPUT values of a script that has been included via include_script() do NOT change the

INPUT and OUTPUT values of the main script.

In order to include a sample script instead of an own script, please use the following function (same as

include_script()):

include_sample(ñSampleScriptò);

DIVUS OPTIMA Scripting Module - Manual . 15

3 Scripts

3.1 INTRODUCTION

This chapter explains how to create, edit, delete and export customized scripts.

3.2 OVERVIEW PAGE OF THE SCRIPTS

In order to access the overview page of the scripts, please follow the steps below:

¶ Log into the OPTIMA user interface with an administrator account

¶ Open the ADMINISTRATION area

¶

A page similar to the following will be shown:

The upper area of the page shows the sample scripts that are preinstalled on your KNXCONTROL device. Those

your own scripts starting from the

samples).

DIVUS OPTIMA Scripting Module - Manual . 16

The lower area instead shows the personally created scripts. In order to add a new script, just click on the NEW

button at the bottom of the page. After inserting a name for the new script it will be created, which is also

confirmed through an on screen message:

If you want to create a new script starting from one of the script examples, just hit the corresponding

COPY/CLONE icon (grey) next to the name of the sample script. Define also a name for the copied script.

In order to delete a script, just click on the corresponding DELETE button (red). After confirmation of the action

If you want to access the detail page of a script, please click on the correspondi ng EDIT button (green) next to

the script name.

DIVUS OPTIMA Scripting Module - Manual . 17

3.3 SHOWING / EDITING SC RIPTS

If the EDIT button of a script has been pressed, the detail page of the script will be opened and the PHP code will

hanged; when accessing a new /cloned script

instead, the contents are editable.

The following screenshot shows the detail page of a new script:

As you may recognize, the TAGS for opening the script...

?>

integrated (outside of the editable area) and must not be included! The following chapters will give

you all the information on how to create scripts using the available libraries.

When finished with editing the code, the changes must be stored through the SAVE button. If you exit hitting

directly the CLOSE button, or switch to another tab inside Optima, all unsaved changes will be lost !

<?php

DIVUS OPTIMA Scripting Module - Manual . 18

3.4 EXAMPLE

The following code will be used as code example in the further chapters of the manual (if not mentioned

differe ntly); it simply returns the received INPUT value after showing it within a debug message (the debug

message will be visible only during debug, as also explained in the following chapters):

$value = input();

debug(ñObtained INPUT value: ò . $value);

output($value);

DIVUS OPTIMA Scripting Module - Manual . 19

4 Run Scripts

4.1 INTRODUCTION

This chapter shows how to create and manage objects of type RUN-SCRIPT; these objects are used in order to

execute the created scripts. In other words, the run -script, wrapped around a PHP script, makes the script an

object inside Optima. Then this object can be configured, shown in a room, executed, etc.

4.2 CREATION OF A RUN-SCRIPT

In order to create a new RUN -SCRIPT, please follow the instructions below:

¶ Log into the OPTIMA user interface with an administration account and open the ADMINISTRATION area

¶ -

¶ Press the ADD button in the bottom left toolbar

¶ Access the configuration window of the RU N-SCRIPT through the EDIT function

Besides the name of the new run -script, also the script that should be executed must be defined by selecting it

from the drop -down menu. Furthermore the graphical design of the run -script can be selected, which defines t he

representation of the run -script within the pages of the visualisation and also defines the interaction possibilities

given to the user.

DIVUS OPTIMA Scripting Module - Manual . 20

Furthermore, the following options can be defined for the run -script:

EXECUTE AT STARTUP
When enabling this checkbox, the run -script is executed immediately after the

startup of the KNXCONTROL device

EXECUTE IN A LOOP

When enabling this checkbox, the run -script will be executed repeatedly inside a

loop, until it is either stopped manually or through an event. Details about this

LOOP TIME
If the run -script is executed in a loop, please specify here the duration of the

loop transition

it is furthermore possible to start and stop a run -script manually, using the corresponding buttons within the detail

page.

The lower part of the detail page permits to manage the relations of the run -script with other objects, as well as

the testing (DEBUG) of the script in real time.

4.2.1 INCOMING CONNECTIONS

The section Incoming Connections allows to define one or more objects that can trigger the execution of the run-

script when changing their state.

Once an object has been dragged into this area, it must b e defined wh ich value should be passed to the script

whenever the source object changes its state. Compared to other objects of the software, for which this value

can be selected from a drop -down menu, the value in this case must be inserted manually, sinc e only in this case

DIVUS OPTIMA Scripting Module - Manual . 21

the maximum flexibility can be granted in order to be able to create concatenations of different run -scripts. This

field can contain the following values:

$VAL The current value of the source object will be passed to the script as input value

$NVAL The inverted value of the source object will be passed to the run -script as input

value

ANY NUMER / STRING The inserted, constant value will be passed to the run -script as input value, inde-

pendently from the object value

In any of the se cases the INPUT value can be obtained inside of the script using the following comma nd, as

already mentioned in the last chapters:

Hint: The value within this field is not the only possibility to access the values of connected objects from within

see corresponding chapter of this manual) to access

the state of every single objec t connected as input of the script. Therefore, the VALUE column is only important

for the input value of the script which can be accessed through the command input(), as already seen.

Each object can have a so called identifier assigned (consisting of a te xt string without spaces or special

characters column Functionality), which simplifies the usage of the object within a script with active

SURROUNDING library. As described more in detail in the next chapter, the following command permits to call the

input object within the script by using this identifier:

The column variable shows the name of the variable, under which the INPUT object can be reached within the

script.

Hint: The column variable is not always refreshed automatically. U button if it should not show

correct values.

4.2.2 OUTGOING CONNECTIONS

In the same way as the incoming connections , also the OUTGOING CONNECTIONS can be defined through the

corresponding section. Objects inserted into this section can be commanded in dependency of the result of the

executed run -script. For each object it is possible to define the action to be executed, as well as the value that

VALUE OF THE RUN-SCRIPT at case, the

OUTPUT value of the script will be passed to the object (s). The output is passed by the following command:

Hint: As already mentioned, the execution of actions on the objects defined as outputs can be inhibited by not

input()

$me- >getParentByIdentifier(ñidentifierò)

output(é);

DIVUS OPTIMA Scripting Module - Manual . 22

passing any argument to the function output(). In this case, the script itself must handle the execution of the

desired actions, as described more in

4.3 DEBUG

Once the desired objects have been def ined as inputs/ outputs (i.e. incoming/outgoing connections) of the run -

script, the execution of the run -script can be tested thanks to the DEBUG function; th is function executes the

script (all actions within the script are executed at 100%), but ignores the execution of actions on the connected

output objects (CHILD-objects), whose state will be shown within the column TEST, but actually NOT really set.

In order to simulate status changes of objects in the Incoming connections section, you can simply change the

value within the column TEST. The selected value will be automatic ally taken over from the field Input value and

passed to the script as INPUT value.

present in the script, they will be shown inside the DEBUG window.

This window generally shows all message outputs of the script, including messages real ized using other PHP

functions like for example print(), echo(), print_r() etc. :

The value returned by the output() function of the scr ipt will be shown in the field Output value ; furthermore the

column TEST of the objects in the output will be changed according to the configuration of the run -script.

As alternative it is also possible to pass values to the script manually. In this case, just w rite the values into the

INPUT VALUE field ENTER key or, even easier, just click on a

free space outside of the input fie ld).

Hint: If the INPUT VALUE TEST column of the object connected as

input or, vice -versa, the value in the TEST

value shown in Output value , please check your script as well as your inputs in the VALUE column of the different

objects.

The simulation function not only is useful to debug the run -script and its various relation s / connections, but also

to debug the PHP code of the script file it self. For this purpose, the generous use of DEBUG messages can be

really helpful and is recommended.

DIVUS OPTIMA Scripting Module - Manual . 23

4.4 BACKGROUND EXECUTION

Run-scripts can also be executed in background, for example in order to repeat certain actions (e.g. periodically

requesting a value), without depending on user interactions.

The first of these options in the detail page of the run -script permits to enable the automatic start of the run -

script at completed startup of the software. If enabled, the script will be started whenever the KNXCO NTROL

device is started or restarted.

 as it is either

stopped manually or through an EVENT. If this option is combined with the first option, it is possible to realize a

continuous execution of the script from the start of the visualisation, which runs completely hid den and requires

no interaction from the user.

If the loop execution is enabled, it is also necessary to define a loop timer, which determines the duration of each

iteration of the loop. The scripting routine automatically calculates the execution time of the script and subtracts

this value from the inserted loop time; in this way, each loop cycle will take exactly as long as the inserted time

value (with a minimum tolerance).

Hint: When enabling the loop execution of a script, the OUTPUT VALUE of the script (generated by the function

output()) is automatically used as INPUT VALUE for the next iteration. In this way, the script can pass over the

value

4.5 REPRESENTATION IN THE VISUALISATION

If a run-script is added to a page of the visualisation, its representation corresponds to the one shown i n the

screenshot(s):

(Optima 1.3.x)

(Optima 2.x Expanded)

(Optima 2.x Compact)

DIVUS OPTIMA Scripting Module - Manual . 24

When clicking on the PLAY button, the run -script is executed and the shown symbol will change for the duration

of the execution. If the run -script is executed in a loop, the object will remain in execution as long as the STOP

button is pressed or the system interrupts the script e xecution.

Hint: The interruption of a run -script that is executed in a loop will occur only after the execution of the script

code, which means at the end of the current iteration . Therefore, it can happen that the run -script seems to

remain in execution although the STOP button was pressed. This depends on the time the system needs to run

through the code of the script .

DIVUS OPTIMA Scripting Module - Manual . 25

5

5.1 INTRODUCTION

KNXCONTROL device within

a script, in form of variables. Those variables are at 100% PHP objects and therefore offer different attributes and

methods, which can be used to interact with the rest of the software. For example, it is possible to read out the

values of each object in the software in real time or to execute actions (like e.g. commanding KNX functions,

executing scenarios, etc.).

5.2 INCLUSION OF THE LIBRARY

In order to include the library, use the following command at the start of the script:

Starting from the next line, the following class can be used within the script:

software and execute operations on

colons and the name of the function to be c alled; these calls are different from normal object calls (whose names

-

5.3 LOADING AN OBJECT

In order to load an object as a variable into a script, the following function ca n be used:

XXX is the unique numeric ID that identifies the object within the software. The ID of an object can be found using

the search function within the configuration area of the software, as shown in the follo wing screenshot:

includ e_library(ñobject ò);

objM

objM::objGet(...);

$variable Name = objM::objGet(XXX);

DIVUS OPTIMA Scripting Module - Manual . 26

The variable now contains a reference to the selected object and offers the following attributes within the script:

ATTRIBUTE DESCRIPTION EXAMPLE/ACCESS

id ID of the object $obj->id

name Name of the object within the visualisation $obj->name

state Current state of the object.

NOTE: this attribute is only usable for scenario objects; in this

case:

Scenario stopped

$obj->state

value Current value of the object

NOTE: this attribute can be used for all object types of the

software that have a value, except scenarios (see attribute

$obj->value

enabled Informs whether the object is active or not. Possible values: 0

, 1

$obj->enabled

msp Most important parameter of the object, depends on its type.

Some examples:

KNX objects: group address

Logics: logical expression

$obj - >msp

$scenarioMovie= objM::objGet(54 0);

DIVUS OPTIMA Scripting Module - Manual . 27

Scenarios: number of iterations

type Function object type of the object, is used by the

communication service. Some examples:

Run-

NOTE: a complete list of the available types can be found in

the appendix, chapter 12.1

$obj - >type

phpclass Graphical web object type, is used by the web interface. Some

examples:

Run-

found in the appendix, chapter 12.1

$obj - >phpclass

values_type Data type or encoding.

NOTE: depends on the object type

$obj - >values_type

DIVUS OPTIMA Scripting Module - Manual . 28

options Array with optional values.

NOTE: depends on the object type

$obj - >options

$obj - >options[ñ...ò]

5.4 RELATIONS WITH OTHER OBJECTS

In order to recognize relations

following methods are av ailable, which must be called directly on the variable with the object reference (and not

Both functions return arrays with the corresponding values:

Those arrays contain for reach relation to other objects (parent or child relations),

which offers the following attributes:

ATTRIBUTE DESCRIPTION EXAMPLE/ACCESS

id ID of the relation within the database

NOTE: this ID is the one of the relation itself and must not be con-

$relation - >id

parent

child

NOTE: these objects are complete PHP objects with the same attrib-

utes as described in chapter 5.3

$relation - >parent

$relation - >child

condition In case of EVENT relations (ACTIVE or PASSIVE), this is the filter on

the PARENT object that if fulfilled toggles the execution of the

event.

$relation - >condition

$object - >loadParents();

$object - >loadChilds();

$object - >parentRelations[];

$object - >childRelations[];

DIVUS OPTIMA Scripting Module - Manual . 29

room) this field is not used and normally contains the expressi on

-

action In case of EVENT relations (ACTIVE or PASSIVE), this is the ACTION

to be executed on the CHILD object.

room) this field is not used and normally contains the expression

-

$relation - >action

value In case of EVENT relations (ACTIVE or PASSIVE), this is the VALUE to

be passed to the CHILD object.

room) this field is not used and normally contains the expression

-

$relation - >value

enabled Informs whether the object is active or not. Possible values: 0 , 1 $relation - >enabled

options List of optional settings of the relation; these settings, if presen t, are

param1='value1'|param2='value2'|...

also appear without apostrophe.

$relation - >options

Hint: The attributes described here correspond to the values of the database table DPADD_OBJECT_RELATION,

which is used from the software to handle relations between objects.

Hint: The functions loadChilds() and loadParents() normally only load relations of t he type EVENT, which are most

commonly used within scripts. In order to load all kind of relations, please just pass the argument true to the

function:

$object ->loadChilds(true);

$object ->loadParents(true);

If only a certain type of relations should be ret urned, just past false as first argument and an array of the desired

relation types as second argument:

$object ->

DIVUS OPTIMA Scripting Module - Manual . 30

$object ->

Please note that

attributes as the starting objects. For example, in order to access the value of the first CHILD object of the starting

object, the following expression can be used:

where:

$object ->childRelations[0] First CHILD relation (Index 0)

$object ->childRelations[0] ->child Reference to the CHILD object of the relation

$object ->childRelations[0] ->child->value Value of the CHILD object

In order to understand how an object and its relations to PARENT and CHILD objects are structured, the following

expression can be helpful (always assuming that $object is the starting object that should be analyzed):

e output and make it

readable) during the execution of the script (using a run -script, as explained it chapter 4.3) will use t he DEBUG

window in order to show the complete structure of the object given as argument.

Here

$firstChildValue = $object - >childRelations[0] - >child - >value;

echo ñ<pre>ò; print_r($object); echo ñ</pre>ò;

obj Object

(

 [id] =>54 0

 [name] =>Scenario Movie

 [state] => 1

 [value] =>

 [enabled] => 1

 [options] => Array

 (

)

 [relations] => Array

 (

)

 [childRelations] => Array

 (

 [0] => relation Object

 (

 [id] => 872

 [parent] =>obj Object

 RECURSION

 [child] =>obj Object

 (

 [id] => 487

 [name] =>Light ï Living room

 [state] = > - 1

DIVUS OPTIMA Scripting Module - Manual . 31

 [value] => 0

 [enabled] => 1

 [options] => Array

 (

 [category] =>lighting

)

 [relations] => Array

 (

)

 [childRelations] => Array

 (

)

 [childsLoaded] =>

 [parentRelations] => Array

 (

)

 [parentsLoaded] =>

 [msp] => 0/ 0/4

)

 [condition] => NO - CONDITION

 [action] => NO - ACTION

 [value] => 0

 [enabled] => 1

 [options] => Array

 (

)

)

 [1] => relation Object

 (

 [id] => 873

 [parent] =>obj Object

 RECURSION

 [child] =>obj Object

 (

 [id] => 491

 [name] =>Light - Kitchen

 [state] => - 1

 [value] => 1

 [enabled] => 1

 [options] => Array

 (

 [category] => lighting

)

 [relations] => Array

 (

)

 [childRelations] => Array

 (

)

DIVUS OPTIMA Scripting Module - Manual . 32

 [childsLoaded] =>

 [parentRelations] => Array

 (

)

 [parentsLoaded] =>

 [msp] => 0/0/6

)

 [condition] => NO - CONDITION

 [action] => NO - ACTION

 [value] => 0

 [enabled] => 1

 [options] => Array

 (

)

)

 [2] => relation Object

 (

 [id] => 875

 [parent] =>obj Object

 RECURSION

 [child] =>obj Object

 (

 [id] => 503

 [name] =>Light D immer

 [state] => - 1

 [value] => 75

 [enabled] => 1

 [options] => Array

 (

 [category] => lighting

)

 [relations] => Array

 (

)

 [childRelations] => Array

 (

)

 [childsLoaded] =>

 [parentRelations] => Array

 (

)

 [parentsLoaded] =>

 [msp] => 0/0/15

)

 [condition] => NO - CONDITION

 [action] => NO - ACTION

 [value] => 0

 [enabled] => 1

DIVUS OPTIMA Scripting Module - Manual . 33

As you can see, the scenario contains 3 relations with CHILD objects (present in the Array childRelations, with

index 0,1 and 2); each of these relations, beneath the different attributes also contains a reference to the CHILD

object, which contains a set of attributes o f its own.

Please note that the relations also show the reference to the PARENT object; since in this case the PARENT object

is the starting object, the reference is automatically renamed by the function print_r and displayed using the

following expression:

Hint: The command print_r, even if very useful during the creation and debugging of the script (in order to

is

completely useless (like every other message output function) and just slows down the execution of the script.

Therefore it is recommended to disable every kind of message output function once the script is working correctly.

It is furthermore possible to request an array of the objects by using the property of the relation to another object

($object the downstanding example). To do so, use one of the following commands:

where:

¶ $fieldName Name of the property of the relation that should be used as filter

¶ $fieldValue Value of the property

If you want to get a reference to the relation itself (instead of the objects), you can use the fol lowing commands:

The arguments that need to be passed are the same as above.

 [options] => Array

 (

)

)

)

 [childsLoaded] => 1

[parentRelations] => Array

 (

)

 [parentsLoaded] => 1

)

RECURSION

$object - >getParentsByRelationField($fieldName,$fieldValue);

$object - >getChildsByRela tionField($fieldName,$fieldValue);

$object - >getParentRelationsByField($fieldName,$fieldValue);

$object - >getChildRelationsByField($fieldName,$fieldValue);

DIVUS OPTIMA Scripting Module - Manual . 34

Furthermore it is also possible to get a reference to the object (connected either in the Incoming connections or

in the Outgoing connections) by using the manually assigned identifiers (check out chapter 4.2.1) and the

following commands:

5.5 COMMANDING AN OBJECT

The object manager objM permits to send commands to any kind of object in the same way a s is can be done

through the visualisation pages of the OPTIMA interface or through logics, scenarios etc.

The following function shows the general method for the execution of operations on objects:

where

¶ ID ID of the object, on which the operation should take place

¶ OPERATION Operation to be executed

¶ VALUE If supported, the value that is passed to the object

0

explained on the next page.

The following table shows the operations (and the values, if supported) for the most important objects of the

software:

OBJECT OPERATION DESCRIPTION VALUE

KNX object SETVALUE Sends a definable value to the KNX group

address

Depends on the KNX object

Examples:

$object - >getParentByIdentif ier($identifier);

$object - >getChildByIdentifier($identifier);

objM::objPerformOperation(ID,OPERATION,VALUE);

objM::objPerformOperation(123,òSETVALUEò,1);

objM::objPerformOperation(54 0,òEXECUTEò);

DIVUS OPTIMA Scripting Module - Manual . 35

GETVALUE Sends a request to get the current state No value

Scenario EXECUTE Executes the scenario No value

STOPEXECUTION Interrupts the scenario (if in execution) No value

Logic EVALUATE Evaluates the logic and sets the outputs

again

No value

Condition CALCULATE Evaluates the condition and sets the outputs

again

No value

On-Screen

Notification

INSERT Puts the notification into the log table, in or-

der to show it inside the message central

No value

E-Mail

notification

SENDMAIL Sends out the mail notification No value

Integrator INTEGRATE Calculates the value of the integrator again No value

RESET Resets the integrator value to 0 No value

Virtual object SETVALUE Sets the value of the virtual object Depends on the type of virtual object

In order to simplify the work with the mostly used objects (KNX objects, scenarios and virtual objects), the following

realized: this functions permit to be executed directly on the PHP variable that contains

the object reference:

If for example we want to start the sample scenario already seen before, the following function calls within the

script can be used :

$object - >set(...); //Sets the value passed as argument (SEVALUE operation)

$object - >run(); //Executes the scenario

$object - >stop(); // I nterrupts the scenario

$scenarioFilm = objM::objGet(54 0);

$scenarioFilm - >run();

DIVUS OPTIMA Scripting Module - Manual . 36

5.6 REFRESHING OBJECTS WITHIN THE DATABASE

The following function permits to send out a SQL query, which can change attributes of the object directly within

the database table:

The available arguments are listed below:

$OBJECTID ID of the object to be refreshed

$FIELD Name of the database column that should be refreshed

$VALUE New value to be written into the database

The same function can also

be called directly on an object. In this case, the correct syntax is:

It is furthermore possible to read th e attributes of an object from the database during the execution of the script

and to force their refresh:

Example: in order to refresh the value of the object, you can use the following command:

Note: value here is the name of a database field, not a generic value, and tells Optima to load its content and

refresh the text shown in the visualisation. So, if the content changed, the visualisation will reflect that change.

objM::objUpdateToDb($objectId,$field,$value);

objM::objUpdateToDb(XXX,ònameò,òNew Nameò);

$object - >updateToDb($field, $value);

$object - >refreshFromDb($field);

$object - >refreshFromDb(ñvalueò);

DIVUS OPTIMA Scripting Module - Manual . 37

6 - Library

6.1 INTRODUCTION

-script

and the objects defined as Incoming connections and Outgoing connections .

This library depends directly on the previous

within this library therefore rely on the explanations in chapter 5, to which will be referred for some details.

Hint ibrary must NOT be included separately, since

it wil already be included automatically.

6.2 INCLUSION OF THE LIBRARY

In order to include the library, use the following command at the start of the script:

6.3 ENVIRONMENT OF THE SCRIPT

Starting from the next line, the following object can be used within the script:

This object is structured in the same way as the objects described in chapter 5 and is a direct reference to the

run-script that executes the script in question (and therefore allows a direct interaction). The object naturally

permits to access the objects connected as Incoming connections Outgoing connections

-script and gives them back as an array (please check out

chapter 4.2).

The inputs of the run -

include_library(ñsurroundingò);

$me

$me- >parentRelations[]; //INPUT relations

$me- >childRelations[]; //OUTPUT relations

$in1; //First input of the run - script

$in2; //Second input of the run - script

DIVUS OPTIMA Scripting Module - Manual . 38

In the same way also the OUTPUTS of the run-

Hint : As already recommended in chapter 5.4, while debugging the script, the whole structure of the run -script

can be displayed using the following expression:

6.4 EXAMPLES

If a script should be created that as OUTPUT VALUE shows the sum of the values of two input objects, it can be

realized in the following way (assuming that the corresponding objects have been defined as Incoming

connections of the run -script):

If now also an object connected to the OUTPUT of the run -script should be set to the calculated value directly

from within the script (instead of using the returned OUTPUT value and an Outgoing connection), the script may

be changed in the following way:

In the second case it is very important to call the function output() WITHOUT an argument, in order to prevent

the run -script from executing the connected events (since the desired action was already done inside the script).

Otherwise the output would be commanded twice: the first time directly from within the script and th e second

time through the execu tion of the event put into the Outgoing connections of the run -script.

A script that calculates the sum of all the Incoming connections of the run -script might look like the following :

é

$out1; //First output of the run - script

$out2; //Second output of the run - script

é

include_ library("surroundin g"); //Library inclusion

$sum = $in1 - >value + $in2 - >value; //Sum of the values of the first two inputs

output($sum); //Returning the calculated value

i nclude _library("surrounding"); //Library inclusion

$sum = $in1 - >value + $in2 - >value; //Sum of the values of the first two inputs

$out1 - >set($sum); //Setting the value of the first output

out put(); / /Script termination with no return

include_library("surrounding"); //Inclusion library

$sum = 0; //Init sum with value 0

foreach($me - >parentRelations as $parentRelation) //Check of the input relations

{

 $parent = $par entRelation - >parent; // Identification of the input

 $sum = $sum + $parent - >value; //Adding the value to the previous

}

output($sum); //Returning the calculated value

DIVUS OPTIMA Scripting Module - Manual . 39

Hint: In the very same way the sample scripts AND and OR preinstalled in your KNXCONTROL device have been

realized; further information on these scripts can be found in the chapter about the sample scripts.

DIVUS OPTIMA Scripting Module - Manual . 40

7 Library

7.1 INTRODUCTION

rmits to read and write data over the RS232 interface of your KNXCONTROL device or, in

combination with a compatible USB -RS232 adapter, also over one of the available USB ports.

7.2 INCLUSION OF THE LIBRARY

In order to include the library, use the following co mmand at the start of the script:

Differently from the classes seen until now (which are called in a static way), the class $serialM must be handled

-

7.3 INITIALIZING THE INT ERFACE

The class serialM permits to configure the primary communication parameters of the serial interface; the following

table shows the available attributes, the functions needed to access them, the default values and also possible

alternative values:

ATTRIBUTE FUNCTION CALL DEFAULT POSSIBLE VALUES

COM port $serialM->deviceSet(...);

NOTE: RS232 of KNXSERVER

include_library(ñserialò);

$serialM

include_library(ñserialò);

